Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Mouse model of atypical DAT deficiency syndrome uncovers dopamine dysfunction associated with parkinsonism and ADHD
Freja Herborg, Lisa K. Konrad, Søren H. Jørgensen, Jamila H. Lilja, Benoît Delignat-Lavaud, Leonie P. Posselt, Ciara F. Pugh, Sofie A. Bach, Cecilia F. Ratner, Nora Awadallah, Jose A. Pino, Frida Berlin, Aske L. Ejdrup, Mikkel V. Olesen, Mattias Rickhag, Birgitte Holst, Susana Aznar, Felix P. Mayer, David Woldbye, Gonzalo E. Torres, Louis-Eric Trudeau, Ulrik Gether
Freja Herborg, Lisa K. Konrad, Søren H. Jørgensen, Jamila H. Lilja, Benoît Delignat-Lavaud, Leonie P. Posselt, Ciara F. Pugh, Sofie A. Bach, Cecilia F. Ratner, Nora Awadallah, Jose A. Pino, Frida Berlin, Aske L. Ejdrup, Mikkel V. Olesen, Mattias Rickhag, Birgitte Holst, Susana Aznar, Felix P. Mayer, David Woldbye, Gonzalo E. Torres, Louis-Eric Trudeau, Ulrik Gether
View: Text | PDF
Research In-Press Preview Genetics Neuroscience

Mouse model of atypical DAT deficiency syndrome uncovers dopamine dysfunction associated with parkinsonism and ADHD

  • Text
  • PDF
Abstract

Atypical dopamine transporter (DAT) deficiency syndrome (DTDS) arises from genetic disruption of DAT function and is characterized by early-onset parkinsonism alongside comorbid psychiatric symptoms. However, the underlying pathobiological processes are largely unknown. Here, we present a mouse model of atypical DTDS based on the patient-derived compound heterozygote genotype, DAT-I312F/D421N+/+. DAT-I312F/D421N+/+ mice exhibited markedly impaired DAT function, leading to widespread changes in dopamine homeostasis, including elevated extracellular dopamine levels, reduced tyrosine hydroxylase and dopamine D1/D2 receptor expression, and decreased evoked dopamine release, mechanistically linked to enhanced tonic D2 autoreceptor inhibition. Fiber photometry measurements revealed disrupted fast striatal dopamine release dynamics, while confocal imaging showed reduced striatal dopaminergic axon fiber density. These neurochemical changes were accompanied by a psychomotor phenotype characterized by hyperlocomotion, enhanced exploration and pronounced clasping. Both amphetamine and anticholinergic treatment ameliorated the aberrant hyperactivity. Notably, amphetamine-induced dopamine release was profoundly blunted in ventral striatum but largely preserved in dorsal striatum, implicating region-specific dopamine release dynamics as a determinant of divergent behavioral and pharmacological responses. Summarized, our findings uncover multiscale dopamine dysfunction that links presynaptic DAT impairment to synaptic and circuit-level disruptions, offering insight into atypical DTDS and the co-occurrence of movement and psychiatric features.

Authors

Freja Herborg, Lisa K. Konrad, Søren H. Jørgensen, Jamila H. Lilja, Benoît Delignat-Lavaud, Leonie P. Posselt, Ciara F. Pugh, Sofie A. Bach, Cecilia F. Ratner, Nora Awadallah, Jose A. Pino, Frida Berlin, Aske L. Ejdrup, Mikkel V. Olesen, Mattias Rickhag, Birgitte Holst, Susana Aznar, Felix P. Mayer, David Woldbye, Gonzalo E. Torres, Louis-Eric Trudeau, Ulrik Gether

×

Full Text PDF

Download PDF (10.60 MB)

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts