Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Loss of Mtm1 causes cholestatic liver disease in a model of X-linked myotubular myopathy
Sophie Karolczak, … , Chunyue Yin, James J. Dowling
Sophie Karolczak, … , Chunyue Yin, James J. Dowling
Published July 25, 2023
Citation Information: J Clin Invest. 2023;133(18):e166275. https://doi.org/10.1172/JCI166275.
View: Text | PDF
Research Article Hepatology Muscle biology

Loss of Mtm1 causes cholestatic liver disease in a model of X-linked myotubular myopathy

  • Text
  • PDF
Abstract

X-linked myotubular myopathy (XLMTM) is a fatal congenital disorder caused by mutations in the MTM1 gene. Currently, there are no approved treatments, although AAV8-mediated gene transfer therapy has shown promise in animal models and preliminarily in patients. However, 4 patients with XLMTM treated with gene therapy have died from progressive liver failure, and hepatobiliary disease has now been recognized more broadly in association with XLMTM. In an attempt to understand whether loss of MTM1 itself is associated with liver pathology, we have characterized what we believe to be a novel liver phenotype in a zebrafish model of this disease. Specifically, we found that loss-of-function mutations in mtm1 led to severe liver abnormalities including impaired bile flux, structural abnormalities of the bile canaliculus, and improper endosome-mediated trafficking of canalicular transporters. Using a reporter-tagged Mtm1 zebrafish line, we established localization of Mtm1 in the liver in association with Rab11, a marker of recycling endosomes, and canalicular transport proteins and demonstrated that hepatocyte-specific reexpression of Mtm1 could rescue the cholestatic phenotype. Last, we completed a targeted chemical screen and found that Dynasore, a dynamin-2 inhibitor, was able to partially restore bile flow and transporter localization to the canalicular membrane. In summary, we demonstrate, for the first time to our knowledge, liver abnormalities that were directly caused by MTM1 mutation in a preclinical model, thus establishing the critical framework for better understanding and comprehensive treatment of the human disease.

Authors

Sophie Karolczak, Ashish R. Deshwar, Evangelina Aristegui, Binita M. Kamath, Michael W. Lawlor, Gaia Andreoletti, Jonathan Volpatti, Jillian L. Ellis, Chunyue Yin, James J. Dowling

×

Figure 2

mtm zebrafish have dilated bile ducts with reduced branching.

Options: View larger image (or click on image) Download as PowerPoint

mtm zebrafish have dilated bile ducts with reduced branching.
(A) Whole...
(A) Whole-mount immunostaining of 7 dpf zebrafish larvae with 2F-11, an antibody that stains bile ducts. The mtm biliary tree was simplified and dilated as compared with the WT sibling. Scale bars: 20 μm. (B) Live-image analysis of Tp1:GFP bile duct transgenic line at 5 dpf and 7 dpf. The simplified and dilated mtm bile ducts seen with 2F-11 staining were also observable by this technique. Defects were more severe at 7 dpf compared with 5 dpf. Scale bars: 20 μm. (C) Quantification of biliary tree segment length and thickness using the Imaris filaments module. The segment length was unchanged at 5 dpf (WT median = 22.22, mtm median = 24.24, P = 0.43) but increased in mtm larvae by 7 dpf (WT median = 8.14, mtm median = 15.0, ****P < 0.0001), suggesting a reduction in branch complexity. Segments were thicker in mtm larvae as early as 5 dpf (WT median = 2.27, mtm median = 7.60, ****P < 0.0001), and this trend continues at 7 dpf (WT median = 2.24, mtm median = 5.15, ****P < 0.0001). Statistical significance was determined by Mann-Whitney U test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts