Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Gene therapy ameliorates spontaneous seizures associated with cortical neuron loss in a Cln2R207X mouse model
Keigo Takahashi, … , Michael Wong, Jonathan D. Cooper
Keigo Takahashi, … , Michael Wong, Jonathan D. Cooper
Published April 27, 2023
Citation Information: J Clin Invest. 2023;133(12):e165908. https://doi.org/10.1172/JCI165908.
View: Text | PDF
Research Article Neuroscience

Gene therapy ameliorates spontaneous seizures associated with cortical neuron loss in a Cln2R207X mouse model

  • Text
  • PDF
Abstract

Although a disease-modifying therapy for classic late infantile neuronal ceroid lipofuscinosis (CLN2 disease) exists, poor understanding of cellular pathophysiology has hampered the development of more effective and persistent therapies. Here, we investigated the nature and progression of neurological and underlying neuropathological changes in Cln2R207X mice, which carry one of the most common pathogenic mutations in human patients but are yet to be fully characterized. Long-term electroencephalography recordings revealed progressive epileptiform abnormalities, including spontaneous seizures, providing a robust, quantifiable, and clinically relevant phenotype. These seizures were accompanied by the loss of multiple cortical neuron populations, including those stained for interneuron markers. Further histological analysis revealed early localized microglial activation months before neuron loss started in the thalamocortical system and spinal cord, which was accompanied by astrogliosis. This pathology was more pronounced and occurred in the cortex before the thalamus or spinal cord and differed markedly from the staging seen in mouse models of other forms of neuronal ceroid lipofuscinosis. Neonatal administration of adeno-associated virus serotype 9–mediated gene therapy ameliorated the seizure and gait phenotypes and prolonged the life span of Cln2R207X mice, attenuating most pathological changes. Our findings highlight the importance of clinically relevant outcome measures for judging preclinical efficacy of therapeutic interventions for CLN2 disease.

Authors

Keigo Takahashi, Elizabeth M. Eultgen, Sophie H. Wang, Nicholas R. Rensing, Hemanth R. Nelvagal, Joshua T. Dearborn, Olivier Danos, Nicholas Buss, Mark S. Sands, Michael Wong, Jonathan D. Cooper

×

Figure 1

Cln2R207X mice show a pronounced seizure phenotype.

Options: View larger image (or click on image) Download as PowerPoint

Cln2R207X mice show a pronounced seizure phenotype.
Electroencephalogra...
Electroencephalography (EEG) recording reveals epileptiform interictal abnormalities and spontaneous seizures in Cln2R207X mice. (A) Representative EEG traces at different time points in WT and Cln2R207X mice. (B) Time course of spontaneous seizures (red dots) and deaths (black Xs) in individual Cln2R207X mice. (C) Percentage of mice displaying spontaneous seizures up to 20 weeks in WT (n = 2) and Cln2R207X mice (n = 10), with a median age at onset of 15 weeks. (D) Average duration of spontaneous seizures in Cln2R207X mice at each age (in weeks). The overall average seizure duration across all ages was 34.5 seconds. There was no significant difference in seizure duration between Cln2R207X mice of different ages. (E) Average frequency of interictal spikes at each age (in weeks). *P < 0.05, **P < 0.01, 1-way ANOVA with Bonferroni’s correction. Values are shown as mean ± SEM (n = 10 Cln2R207X mice).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts