Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Lysosomal processing of sulfatide analogs alters target NKT cell specificity and immune responses in cancer
Kumiko Nishio, Lise Pasquet, Kaddy Camara, Julia DiSapio, Kevin S. Hsu, Shingo Kato, Anja Bloom, Stewart K. Richardson, Joshua A. Welsh, Tianbo Jiang, Jennifer C. Jones, Susanna Cardell, Hiroshi Watarai, Masaki Terabe, Purevdorj B. Olkhanud, Amy R. Howell, Jay A. Berzofsky
Kumiko Nishio, Lise Pasquet, Kaddy Camara, Julia DiSapio, Kevin S. Hsu, Shingo Kato, Anja Bloom, Stewart K. Richardson, Joshua A. Welsh, Tianbo Jiang, Jennifer C. Jones, Susanna Cardell, Hiroshi Watarai, Masaki Terabe, Purevdorj B. Olkhanud, Amy R. Howell, Jay A. Berzofsky
View: Text | PDF
Research Article Cell biology Immunology

Lysosomal processing of sulfatide analogs alters target NKT cell specificity and immune responses in cancer

  • Text
  • PDF
Abstract

In a structure-function study of sulfatides that typically stimulate type II NKT cells, we made an unexpected discovery. We compared analogs with sphingosine or phytosphingosine chains and 24-carbon acyl chains with 0-1-2 double bonds (C or pC24:0, 24:1, or 24:2). C24:1 and C24:2 sulfatide presented by the CD1d monomer on plastic stimulated type II, not type I, NKT cell hybridomas, as expected. Unexpectedly, when presented by bone marrow–derived DCs (BMDCs), C24:2 reversed specificity to stimulate type I, not type II, NKT cell hybridomas, mimicking the corresponding β-galactosylceramide (βGalCer) without sulfate. C24:2 induced IFN-γ–dependent immunoprotection against CT26 colon cancer lung metastases, skewed the cytokine profile, and activated conventional DC subset 1 cells (cDC1s). This was abrogated by blocking lysosomal processing with bafilomycin A1, or by sulfite blocking of arylsulfatase or deletion of this enyzme that cleaves off sulfate. Thus, C24:2 was unexpectedly processed in BMDCs from a type II to a type I NKT cell–stimulating ligand, promoting tumor immunity. We believe this is the first discovery showing that antigen processing of glycosylceramides alters the specificity for the target cell, reversing the glycolipid’s function from stimulating type II NKT cells to stimulating type I NKT cells, thereby introducing protective functional activity in cancer. We also believe our study uncovers a new role for antigen processing that does not involve MHC loading but rather alteration of which type of cell is responding.

Authors

Kumiko Nishio, Lise Pasquet, Kaddy Camara, Julia DiSapio, Kevin S. Hsu, Shingo Kato, Anja Bloom, Stewart K. Richardson, Joshua A. Welsh, Tianbo Jiang, Jennifer C. Jones, Susanna Cardell, Hiroshi Watarai, Masaki Terabe, Purevdorj B. Olkhanud, Amy R. Howell, Jay A. Berzofsky

×

Figure 5

C24:2 induces expansion of cDC, especially cDC1, and higher expression of the costimulating molecule.

Options: View larger image (or click on image) Download as PowerPoint
C24:2 induces expansion of cDC, especially cDC1, and higher expression o...
Mice were injected i.p. with the vehicle used to dissolve the sulfatide analogs, 500 pmol KRN7000, or 30 nmol sulfatide analogs, and spleens were harvested 24 hours later. After staining with mAbs specific for leukocyte markers, flow cytometry was used to gate each indicated cell type. (A) Multiparameter staining for cell-type–specific markers and gating strategy for each cell population. (B and C) Absolute cell numbers of the indicated cells. (D) Splenic cDC1s were analyzed by flow cytometry for the indicated cell-surface molecules. Data shown are the mean ± SD. n = 6 mice per group. *P < 0.05 and **P < 0.005.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts