Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

A novel streptococcal surface protease promotes virulence, resistance to opsonophagocytosis, and cleavage of human fibrinogen
Theresa O. Harris, Daniel W. Shelver, John F. Bohnsack, Craig E. Rubens
Theresa O. Harris, Daniel W. Shelver, John F. Bohnsack, Craig E. Rubens
View: Text | PDF
Article Virology

A novel streptococcal surface protease promotes virulence, resistance to opsonophagocytosis, and cleavage of human fibrinogen

  • Text
  • PDF
Abstract

Group B streptococcus (GBS) is an important human pathogen. In this study, we sought to identify mechanisms that may protect GBS from host defenses in addition to its capsular polysaccharide. A gene encoding a cell-surface–associated protein (cspA) was characterized from a highly virulent type III GBS isolate, COH1. Its sequence indicated that it is a subtilisin-like extracellular serine protease homologous to streptococcal C5a peptidases and caseinases of lactic acid bacteria. The wild-type strain cleaved the α chain of human fibrinogen, whereas a cspA mutant, TOH121, was unable to cleave fibrinogen. We observed aggregated material when COH1 was incubated with fibrinogen but not when the mutant strain was treated similarly. This suggested that the product(s) of fibrinogen cleavage have strong adhesive properties and may be similar to fibrin. The cspA gene was present among representative clinical isolates from all nine capsular serotypes, as revealed by Southern blotting. A cspA– mutant was ten times less virulent in a neonatal rat sepsis model of GBS infections, as measured by LD50 analysis. In addition, the cspA– mutant was significantly more sensitive than the wild-type strain to opsonophagocytic killing by human neutrophils in vitro. Taken together, the results suggest that cleavage of fibrinogen by CspA may increase the lethality of GBS infection, potentially by protecting the bacterium from opsonophagocytic killing.

Authors

Theresa O. Harris, Daniel W. Shelver, John F. Bohnsack, Craig E. Rubens

×

Usage data is cumulative from November 2024 through November 2025.

Usage JCI PMC
Text version 672 51
PDF 92 11
Figure 350 5
Citation downloads 78 0
Totals 1,192 67
Total Views 1,259
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts