Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
FOXK2 promotes ovarian cancer stemness by regulating the unfolded protein response pathway
Yaqi Zhang, … , Mazhar Adli, Daniela Matei
Yaqi Zhang, … , Mazhar Adli, Daniela Matei
Published March 29, 2022
Citation Information: J Clin Invest. 2022;132(10):e151591. https://doi.org/10.1172/JCI151591.
View: Text | PDF
Research Article Cell biology Oncology

FOXK2 promotes ovarian cancer stemness by regulating the unfolded protein response pathway

  • Text
  • PDF
Abstract

Understanding the regulatory programs enabling cancer stem cells (CSCs) to self-renew and drive tumorigenicity could identify new treatments. Through comparative chromatin-state and gene expression analyses in ovarian CSCs versus non-CSCs, we identified FOXK2 as a highly expressed stemness-specific transcription factor in ovarian cancer. Its genetic depletion diminished stemness features and reduced tumor initiation capacity. Our mechanistic studies highlight that FOXK2 directly regulated IRE1α (encoded by ERN1) expression, a key sensor for the unfolded protein response (UPR). Chromatin immunoprecipitation and sequencing revealed that FOXK2 bound to an intronic regulatory element of ERN1. Blocking FOXK2 from binding to this enhancer by using a catalytically inactive CRISPR/Cas9 (dCas9) diminished IRE1α transcription. At the molecular level, FOXK2-driven upregulation of IRE1α led to alternative XBP1 splicing and activation of stemness pathways, while genetic or pharmacological blockade of this sensor of the UPR inhibited ovarian CSCs. Collectively, these data establish what we believe is a new function for FOXK2 as a key transcriptional regulator of CSCs and a mediator of the UPR, providing insight into potentially targetable new pathways in CSCs.

Authors

Yaqi Zhang, Yinu Wang, Guangyuan Zhao, Edward J. Tanner, Mazhar Adli, Daniela Matei

×

Figure 6

XBP1 splicing is associated with stemness characteristics.

Options: View larger image (or click on image) Download as PowerPoint
XBP1 splicing is associated with stemness characteristics.
(A) Annexin V...
(A) Annexin V staining and flow cytometry–measured apoptotic cells among sorted ALDH+ and ALDH– OVCAR5 cells treated with DMSO, 2 μg/mL tunicamycin, or 10 μM STF-083010 (n = 3). (B) qRT-PCR determination of the full-length XBP1 transcript (XBP1u) and the spliced isoform (XBP1s) in OVCAR5 and OVCAR3 cells transduced with 2 different shRNAs directed at XBP1 (shXBP1) or with control shRNA (shCtrl). (C) XBP1 mRNA expression levels measured by qRT-PCR (n = 3) in shCtrl and shXBP1 OVCAR5 cells. (D) Percentage of ALDH+ cells (n = 3) in shXBP1- and shCtrl-transduced OVCAR5 cells. (E) Spheroid formation assessed by a cell viability assay in shCtrl- and shXBP1-transduced OVCAR5 cells (n = 5). (F) mRNA expression levels (n = 3) of SOX2, OCT4, NANOG, and ALDH1A1 in shCtrl- and shXBP1-transduced OVCAR5 and OVCAR3 cells measured by qRT-PCR. *P < 0.05; **P < 0.01; ***P < 0.005; ****P < 0.0001, by unpaired, 2-tailed Student’s t test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts