Caffeine is the most widely consumed psychoactive substance in the world. Strikingly, the molecular pathways engaged by its regular consumption remain unclear. We herein addressed the mechanisms associated with habitual (chronic) caffeine consumption in the mouse hippocampus using untargeted orthogonal omics techniques. Our results revealed that chronic caffeine exerts concerted pleiotropic effects in the hippocampus at the epigenomic, proteomic, and metabolomic levels. Caffeine lowered metabolism-related processes (e.g., at the level of metabolomics and gene expression) in bulk tissue, while it induced neuron-specific epigenetic changes at synaptic transmission/plasticity-related genes and increased experience-driven transcriptional activity. Altogether, these findings suggest that regular caffeine intake improves the signal-to-noise ratio during information encoding, in part through fine-tuning of metabolic genes, while boosting the salience of information processing during learning in neuronal circuits.
Isabel Paiva, Lucrezia Cellai, Céline Meriaux, Lauranne Poncelet, Ouada Nebie, Jean-Michel Saliou, Anne-Sophie Lacoste, Anthony Papegaey, Hervé Drobecq, Stéphanie Le Gras, Marion Schneider, Enas M. Malik, Christa E. Müller, Emilie Faivre, Kevin Carvalho, Victoria Gomez-Murcia, Didier Vieau, Bryan Thiroux, Sabiha Eddarkaoui, Thibaud Lebouvier, Estelle Schueller, Laura Tzeplaeff, Iris Grgurina, Jonathan Seguin, Jonathan Stauber, Luisa V. Lopes, Luc Buée, Valérie Buée-Scherrer, Rodrigo A. Cunha, Rima Ait-Belkacem, Nicolas Sergeant, Jean-Sébastien Annicotte, Anne-Laurence Boutillier, David Blum
Usage data is cumulative from June 2022 through June 2023.
Usage | JCI | PMC |
---|---|---|
Text version | 61,791 | 413 |
15,438 | 144 | |
Figure | 1,619 | 14 |
Supplemental data | 2,709 | 57 |
Citation downloads | 628 | 0 |
Totals | 82,185 | 628 |
Total Views | 82,813 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.