Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Issue published June 15, 2022 Previous issue | Next issue

  • Volume 132, Issue 12
Go to section:
  • Review Series
  • Commentaries
  • Research Articles
  • Corrigendum

On the cover: Tumor-reactive CD4+ T cells in human solid tumors

Duhen et al. report that coexpression of PD-1 and ICOS on tumor-infiltrating CD4+ T helper cells enriches for tumor-reactive cells in patients with head and neck squamous cell carcinoma and colorectal cancer. The cover image shows multiplex immunohistochemistry for CD3 (green), CD8 (magenta), FOXP3 (white), ICOS (red), MHC class II (yellow), and cytokeratin (cyan) from a section of a head and neck squamous cell carcinoma.

Review Series
Circulating tumor DNA: current challenges for clinical utility
Donna K. Dang, Ben H. Park
Donna K. Dang, Ben H. Park
Published June 15, 2022
Citation Information: J Clin Invest. 2022;132(12):e154941. https://doi.org/10.1172/JCI154941.
View: Text | PDF

Circulating tumor DNA: current challenges for clinical utility

  • Text
  • PDF
Abstract

Cancer cells shed naked DNA molecules into the circulation. This circulating tumor DNA (ctDNA) has become the predominant analyte for liquid biopsies to understand the mutational landscape of cancer. Coupled with next-generation sequencing, ctDNA can serve as an alternative substrate to tumor tissues for mutation detection and companion diagnostic purposes. In fact, recent advances in precision medicine have rapidly enabled the use of ctDNA to guide treatment decisions for predicting response and resistance to targeted therapies and immunotherapies. An advantage of using ctDNA over conventional tissue biopsies is the relatively noninvasive approach of obtaining peripheral blood, allowing for simple repeated and serial assessments. Most current clinical practice using ctDNA has endeavored to identify druggable and resistance mutations for guiding systemic therapy decisions, albeit mostly in metastatic disease. However, newer research is evaluating potential for ctDNA as a marker of minimal residual disease in the curative setting and as a useful screening tool to detect cancer in the general population. Here we review the history of ctDNA and liquid biopsies, technologies to detect ctDNA, and some of the current challenges and limitations in using ctDNA as a marker of minimal residual disease and as a general blood-based cancer screening tool. We also discuss the need to develop rigorous clinical studies to prove the clinical utility of ctDNA for future applications in oncology.

Authors

Donna K. Dang, Ben H. Park

×

Next-generation sequencing: unraveling genetic mechanisms that shape cancer immunotherapy efficacy
Ahmed Halima, … , Winston Vuong, Timothy A. Chan
Ahmed Halima, … , Winston Vuong, Timothy A. Chan
Published June 15, 2022
Citation Information: J Clin Invest. 2022;132(12):e154945. https://doi.org/10.1172/JCI154945.
View: Text | PDF

Next-generation sequencing: unraveling genetic mechanisms that shape cancer immunotherapy efficacy

  • Text
  • PDF
Abstract

Immunity is governed by fundamental genetic processes. These processes shape the nature of immune cells and set the rules that dictate the myriad complex cellular interactions that power immune systems. Everything from the generation of T cell receptors and antibodies, control of epitope presentation, and recognition of pathogens by the immunoediting of cancer cells is, in large part, made possible by core genetic mechanisms and the cellular machinery that they encode. In the last decade, next-generation sequencing has been used to dissect the complexities of cancer immunity with potent effect. Sequencing of exomes and genomes has begun to reveal how the immune system recognizes “foreign” entities and distinguishes self from non-self, especially in the setting of cancer. High-throughput analyses of transcriptomes have revealed deep insights into how the tumor microenvironment affects immunotherapy efficacy. In this Review, we discuss how high-throughput sequencing has added to our understanding of how immune systems interact with cancer cells and how cancer immunotherapies work.

Authors

Ahmed Halima, Winston Vuong, Timothy A. Chan

×
Commentaries
Graft-versus-host disease: establishing IL-33 as an important costimulatory molecule
James Ferrara, Mariano Prado-Acosta
James Ferrara, Mariano Prado-Acosta
Published June 15, 2022
Citation Information: J Clin Invest. 2022;132(12):e160692. https://doi.org/10.1172/JCI160692.
View: Text | PDF

Graft-versus-host disease: establishing IL-33 as an important costimulatory molecule

  • Text
  • PDF
Abstract

Approximately half of patients with hematologic malignancy who are treated with allogeneic hematopoietic stem cell transplantation (alloHCT) experience graft-versus-host disease (GVHD), which has high mortality rates despite immunosuppressive therapy. IL-12 is known to drive donor T cells toward an inflammatory Th1 lineage in GVHD, but other mechanisms also promote pathological Th1 alloimmune responses. In this issue of the JCI, Dwyer et al. report on their use of transgenic mice and alloHCT models of GVHD to demonstrate that IL-33 acts directly on donor T cells to increase Tbet expression independently of IL-12. Notably, IL-33 amplified T cell receptor–signaling pathways and inhibited production of regulatory molecules. These findings firmly establish IL-33 as an important costimulatory molecule for Th1 cells during GVHD and provide a target for reducing GVHD, especially in the gastrointestinal (GI) tract, where damage drives mortality.

Authors

James Ferrara, Mariano Prado-Acosta

×

Twists in the fibrodysplasia ossificans progressiva story challenge and expand our understanding of BMP biology
Michael T. Collins
Michael T. Collins
Published June 15, 2022
Citation Information: J Clin Invest. 2022;132(12):e160773. https://doi.org/10.1172/JCI160773.
View: Text | PDF

Twists in the fibrodysplasia ossificans progressiva story challenge and expand our understanding of BMP biology

  • Text
  • PDF
Abstract

Fibrodysplasia ossificans progressiva (FOP) is an ultrarare, debilitating disease in which heterotopic bone is formed in certain soft tissues. A gain-of-function variant in the cytoplasmic domain of the activin A receptor type I (ACVR1) exists in all patients with FOP. Strikingly, these FOP-causing variants imbue a neofunction to ACVR1 — the ability to recognize activin A as an agonist with bone morphogenic protein–like signaling that leads to heterotopic ossification (HO). These findings are supported by the efficacy of anti–activin A antibodies in preventing HO in FOP mice. This surprising story continues in companion papers in this issue of the JCI. Aykul et al. and Lees-Shepard et al. independently found that antibodies against ACVR1, which were being developed as potential therapeutics for FOP, instead caused HO in FOP mice. While this unexpected finding may be the clinical final act for such antibodies, it provides another twist in the unique and evolving FOP story.

Authors

Michael T. Collins

×

Finding the right help in the tumor microenvironment
Jessica N. Filderman, Walter J. Storkus
Jessica N. Filderman, Walter J. Storkus
Published June 15, 2022
Citation Information: J Clin Invest. 2022;132(12):e161052. https://doi.org/10.1172/JCI161052.
View: Text | PDF

Finding the right help in the tumor microenvironment

  • Text
  • PDF
Abstract

Tumor-infiltrating lymphocytes (TILs) contain substantial numbers of CD4+ T cells mediating pro- and antitumor functions. While CD4+ Tregs are well characterized and known to promote tumor immune evasion, the fingerprint of CD4+ Th cells that recognizes tumor antigens and serves to restrict disease progression has remained poorly discriminated. In this issue of the JCI, Duhen et al. analyzed tumors from patients with head and neck squamous cell carcinoma or colon carcinoma and identified a unique programmed cell death 1–positive, ICOS1-positive (PD-1+ICOS1+) subpopulation of CD4+ TILs highly enriched for the ability to recognize tumor-associated antigens. These cells localized proximally to MHC II+ antigen-presenting cells and CD8+ T cells within tumors, where they appeared to proliferate and function almost exclusively as Th cells. These potentially therapeutic Th cells can be monitored for patient prognosis and are expected to have substantial utility in developing personalized adoptive cell– and vaccine-based immunotherapeutic approaches for improving patient outcomes.

Authors

Jessica N. Filderman, Walter J. Storkus

×
Research Articles
BCG therapy downregulates HLA-I on malignant cells to subvert antitumor immune responses in bladder cancer
Mathieu Rouanne, … , Laurence Zitvogel, Aurélien Marabelle
Mathieu Rouanne, … , Laurence Zitvogel, Aurélien Marabelle
Published May 3, 2022
Citation Information: J Clin Invest. 2022;132(12):e145666. https://doi.org/10.1172/JCI145666.
View: Text | PDF

BCG therapy downregulates HLA-I on malignant cells to subvert antitumor immune responses in bladder cancer

  • Text
  • PDF
Abstract

Patients with high-risk, nonmuscle-invasive bladder cancer (NMIBC) frequently relapse after standard intravesical bacillus Calmette-Guérin (BCG) therapy and may have a dismal outcome. The mechanisms of resistance to such immunotherapy remain poorly understood. Here, using cancer cell lines, freshly resected human bladder tumors, and samples from cohorts of patients with bladder cancer before and after BCG therapy, we demonstrate 2 distinct patterns of immune subversion upon BCG relapse. In the first pattern, intracellular BCG infection of cancer cells induced a posttranscriptional downregulation of HLA-I membrane expression via inhibition of autophagy flux. Patients with HLA-I–deficient cancer cells following BCG therapy had a myeloid immunosuppressive tumor microenvironment (TME) with epithelial-mesenchymal transition (EMT) characteristics and dismal outcomes. Conversely, patients with HLA-I–proficient cancer cells after BCG therapy presented with CD8+ T cell tumor infiltrates, upregulation of inflammatory cytokines, and immune checkpoint–inhibitory molecules. The latter patients had a very favorable outcome. We surmise that HLA-I expression in bladder cancers at relapse following BCG does not result from immunoediting but rather from an immune subversion process directly induced by BCG on cancer cells, which predicts a dismal prognosis. HLA-I scoring of cancer cells by IHC staining can be easily implemented by pathologists in routine practice to stratify future treatment strategies for patients with urothelial cancer.

Authors

Mathieu Rouanne, Julien Adam, Camélia Radulescu, Diane Letourneur, Delphine Bredel, Séverine Mouraud, Anne-Gaëlle Goubet, Marion Leduc, Noah Chen, Tuan Zea Tan, Nicolas Signolle, Amélie Bigorgne, Michael Dussiot, Lambros Tselikas, Sandrine Susini, François-Xavier Danlos, Anna K. Schneider, Roman Chabanon, Sophie Vacher, Ivan Bièche, Thierry Lebret, Yves Allory, Jean-Charles Soria, Nicholas Arpaia, Guido Kroemer, Oliver Kepp, Jean Paul Thiery, Laurence Zitvogel, Aurélien Marabelle

×

Caffeine intake exerts dual genome-wide effects on hippocampal metabolism and learning-dependent transcription
Isabel Paiva, … , Anne-Laurence Boutillier, David Blum
Isabel Paiva, … , Anne-Laurence Boutillier, David Blum
Published May 10, 2022
Citation Information: J Clin Invest. 2022;132(12):e149371. https://doi.org/10.1172/JCI149371.
View: Text | PDF

Caffeine intake exerts dual genome-wide effects on hippocampal metabolism and learning-dependent transcription

  • Text
  • PDF
Abstract

Caffeine is the most widely consumed psychoactive substance in the world. Strikingly, the molecular pathways engaged by its regular consumption remain unclear. We herein addressed the mechanisms associated with habitual (chronic) caffeine consumption in the mouse hippocampus using untargeted orthogonal omics techniques. Our results revealed that chronic caffeine exerts concerted pleiotropic effects in the hippocampus at the epigenomic, proteomic, and metabolomic levels. Caffeine lowered metabolism-related processes (e.g., at the level of metabolomics and gene expression) in bulk tissue, while it induced neuron-specific epigenetic changes at synaptic transmission/plasticity-related genes and increased experience-driven transcriptional activity. Altogether, these findings suggest that regular caffeine intake improves the signal-to-noise ratio during information encoding, in part through fine-tuning of metabolic genes, while boosting the salience of information processing during learning in neuronal circuits.

Authors

Isabel Paiva, Lucrezia Cellai, Céline Meriaux, Lauranne Poncelet, Ouada Nebie, Jean-Michel Saliou, Anne-Sophie Lacoste, Anthony Papegaey, Hervé Drobecq, Stéphanie Le Gras, Marion Schneider, Enas M. Malik, Christa E. Müller, Emilie Faivre, Kevin Carvalho, Victoria Gomez-Murcia, Didier Vieau, Bryan Thiroux, Sabiha Eddarkaoui, Thibaud Lebouvier, Estelle Schueller, Laura Tzeplaeff, Iris Grgurina, Jonathan Seguin, Jonathan Stauber, Luisa V. Lopes, Luc Buée, Valérie Buée-Scherrer, Rodrigo A. Cunha, Rima Ait-Belkacem, Nicolas Sergeant, Jean-Sébastien Annicotte, Anne-Laurence Boutillier, David Blum

×

CAR T cell manufacturing from naive/stem memory T lymphocytes enhances antitumor responses while curtailing cytokine release syndrome
Silvia Arcangeli, … , Attilio Bondanza, Monica Casucci
Silvia Arcangeli, … , Attilio Bondanza, Monica Casucci
Published May 3, 2022
Citation Information: J Clin Invest. 2022;132(12):e150807. https://doi.org/10.1172/JCI150807.
View: Text | PDF

CAR T cell manufacturing from naive/stem memory T lymphocytes enhances antitumor responses while curtailing cytokine release syndrome

  • Text
  • PDF
Abstract

Chimeric antigen receptor (CAR) T cell expansion and persistence represent key factors to achieve complete responses and prevent relapses. These features are typical of early memory T cells, which can be highly enriched through optimized manufacturing protocols. Here, we investigated the efficacy and safety profiles of CAR T cell products generated from preselected naive/stem memory T cells (TN/SCM), as compared with unselected T cells (TBULK). Notwithstanding their reduced effector signature in vitro, limiting CAR TN/SCM doses showed superior antitumor activity and the unique ability to counteract leukemia rechallenge in hematopoietic stem/precursor cell–humanized mice, featuring increased expansion rates and persistence together with an ameliorated exhaustion and memory phenotype. Most relevantly, CAR TN/SCM proved to be intrinsically less prone to inducing severe cytokine release syndrome, independently of the costimulatory endodomain employed. This safer profile was associated with milder T cell activation, which translated into reduced monocyte activation and cytokine release. These data suggest that CAR TN/SCM are endowed with a wider therapeutic index compared with CAR TBULK.

Authors

Silvia Arcangeli, Camilla Bove, Claudia Mezzanotte, Barbara Camisa, Laura Falcone, Francesco Manfredi, Eugenia Bezzecchi, Rita El Khoury, Rossana Norata, Francesca Sanvito, Maurilio Ponzoni, Beatrice Greco, Marta Angiola Moresco, Matteo G. Carrabba, Fabio Ciceri, Chiara Bonini, Attilio Bondanza, Monica Casucci

×

IL-33 acts as a costimulatory signal to generate alloreactive Th1 cells in graft-versus-host disease
Gaelen K. Dwyer, … , Warren Shlomchik, Hēth R. Turnquist
Gaelen K. Dwyer, … , Warren Shlomchik, Hēth R. Turnquist
Published May 3, 2022
Citation Information: J Clin Invest. 2022;132(12):e150927. https://doi.org/10.1172/JCI150927.
View: Text | PDF

IL-33 acts as a costimulatory signal to generate alloreactive Th1 cells in graft-versus-host disease

  • Text
  • PDF
Abstract

Antigen-presenting cells (APCs) integrate signals emanating from local pathology and program appropriate T cell responses. In allogeneic hematopoietic stem cell transplantation (alloHCT), recipient conditioning releases damage-associated molecular patterns (DAMPs) that generate proinflammatory APCs that secrete IL-12, which is a driver of donor Th1 responses, causing graft-versus-host disease (GVHD). Nevertheless, other mechanisms exist to initiate alloreactive T cell responses, as recipients with disrupted DAMP signaling or lacking IL-12 develop GVHD. We established that tissue damage signals are perceived directly by donor CD4+ T cells and promoted T cell expansion and differentiation. Specifically, the fibroblastic reticular cell–derived DAMP IL-33 is increased by recipient conditioning and is critical for the initial activation, proliferation, and differentiation of alloreactive Th1 cells. IL-33 stimulation of CD4+ T cells was not required for lymphopenia-induced expansion, however. IL-33 promoted IL-12–independent expression of Tbet and generation of Th1 cells that infiltrated GVHD target tissues. Mechanistically, IL-33 augmented CD4+ T cell TCR-associated signaling pathways in response to alloantigen. This enhanced T cell expansion and Th1 polarization, but inhibited the expression of regulatory molecules such as IL-10 and Foxp3. These data establish an unappreciated role for IL-33 as a costimulatory signal for donor Th1 generation after alloHCT.

Authors

Gaelen K. Dwyer, Lisa R. Mathews, José A. Villegas, Anna Lucas, Anne Gonzalez de Peredo, Bruce R. Blazar, Jean-Philippe Girard, Amanda C. Poholek, Sanjiv A. Luther, Warren Shlomchik, Hēth R. Turnquist

×

High-affinity autoreactive plasma cells disseminate through multiple organs in patients with immune thrombocytopenic purpura
Pablo Canales-Herrerias, … , Matthieu Mahevas, Pierre Bruhns
Pablo Canales-Herrerias, … , Matthieu Mahevas, Pierre Bruhns
Published May 3, 2022
Citation Information: J Clin Invest. 2022;132(12):e153580. https://doi.org/10.1172/JCI153580.
View: Text | PDF

High-affinity autoreactive plasma cells disseminate through multiple organs in patients with immune thrombocytopenic purpura

  • Text
  • PDF
Abstract

The major therapeutic goal for immune thrombocytopenic purpura (ITP) is to restore normal platelet counts using drugs to promote platelet production or by interfering with mechanisms responsible for platelet destruction. Eighty percent of patients with ITP possess anti–integrin αIIbβ3 IgG autoantibodies that cause platelet opsonization and phagocytosis. The spleen is considered the primary site of autoantibody production by autoreactive B cells and platelet destruction. The immediate failure in approximately 50% of patients to recover a normal platelet count after anti-CD20 rituximab-mediated B cell depletion and splenectomy suggests that autoreactive, rituximab-resistant, IgG-secreting B cells (IgG-SCs) reside in other anatomical compartments. We analyzed more than 3,300 single IgG-SCs from spleen, bone marrow, and/or blood of 27 patients with ITP, revealing high interindividual variability in affinity for αIIbβ3, with variations over 3 logs. IgG-SC dissemination and range of affinities were, however, similar for each patient. Longitudinal analysis of autoreactive IgG-SCs upon treatment with the anti-CD38 mAb daratumumab demonstrated variable outcomes, from complete remission to failure with persistence of high-affinity anti–αIIbβ3 IgG-SCs in the bone marrow. This study demonstrates the existence and dissemination of high-affinity autoreactive plasma cells in multiple anatomical compartments of patients with ITP that may cause the failure of current therapies.

Authors

Pablo Canales-Herrerias, Etienne Crickx, Matteo Broketa, Aurélien Sokal, Guilhem Chenon, Imane Azzaoui, Alexis Vandenberghe, Angga Perima, Bruno Iannascoli, Odile Richard-Le Goff, Carlos Castrillon, Guillaume Mottet, Delphine Sterlin, Ailsa Robbins, Marc Michel, Patrick England, Gael A. Millot, Klaus Eyer, Jean Baudry, Matthieu Mahevas, Pierre Bruhns

×

Anti-ACVR1 antibodies exacerbate heterotopic ossification in fibrodysplasia ossificans progressiva (FOP) by activating FOP-mutant ACVR1
Senem Aykul, … , Vincent Idone, Sarah J. Hatsell
Senem Aykul, … , Vincent Idone, Sarah J. Hatsell
Published May 5, 2022
Citation Information: J Clin Invest. 2022;132(12):e153792. https://doi.org/10.1172/JCI153792.
View: Text | PDF

Anti-ACVR1 antibodies exacerbate heterotopic ossification in fibrodysplasia ossificans progressiva (FOP) by activating FOP-mutant ACVR1

  • Text
  • PDF
Abstract

Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disorder whose most debilitating pathology is progressive and cumulative heterotopic ossification (HO) of skeletal muscles, ligaments, tendons, and fascia. FOP is caused by mutations in the type I BMP receptor gene ACVR1, which enable ACVR1 to utilize its natural antagonist, activin A, as an agonistic ligand. The physiological relevance of this property is underscored by the fact that HO in FOP is exquisitely dependent on activation of FOP-mutant ACVR1 by activin A, an effect countered by inhibition of anti–activin A via monoclonal antibody treatment. Hence, we surmised that anti-ACVR1 antibodies that block activation of ACVR1 by ligands should also inhibit HO in FOP and provide an additional therapeutic option for this condition. Therefore, we generated anti-ACVR1 monoclonal antibodies that block ACVR1’s activation by its ligands. Surprisingly, in vivo, these anti-ACVR1 antibodies stimulated HO and activated signaling of FOP-mutant ACVR1. This property was restricted to FOP-mutant ACVR1 and resulted from anti-ACVR1 antibody–mediated dimerization of ACVR1. Conversely, wild-type ACVR1 was inhibited by anti-ACVR1 antibodies. These results uncover an additional property of FOP-mutant ACVR1 and indicate that anti-ACVR1 antibodies should not be considered as therapeutics for FOP.

Authors

Senem Aykul, Lily Huang, Lili Wang, Nanditha M. Das, Sandra Reisman, Yonaton Ray, Qian Zhang, Nyanza Rothman, Kalyan C. Nannuru, Vishal Kamat, Susannah Brydges, Luca Troncone, Laura Johnsen, Paul B. Yu, Sergio Fazio, John Lees-Shepard, Kevin Schutz, Andrew J. Murphy, Aris N. Economides, Vincent Idone, Sarah J. Hatsell

×

An anti-ACVR1 antibody exacerbates heterotopic ossification by fibro-adipogenic progenitors in fibrodysplasia ossificans progressiva mice
John B. Lees-Shepard, … , Jeffrey W. Hunter, David J. Goldhamer
John B. Lees-Shepard, … , Jeffrey W. Hunter, David J. Goldhamer
Published May 3, 2022
Citation Information: J Clin Invest. 2022;132(12):e153795. https://doi.org/10.1172/JCI153795.
View: Text | PDF

An anti-ACVR1 antibody exacerbates heterotopic ossification by fibro-adipogenic progenitors in fibrodysplasia ossificans progressiva mice

  • Text
  • PDF
Abstract

Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease characterized by progressive and catastrophic heterotopic ossification (HO) of skeletal muscle and associated soft tissues. FOP is caused by dominantly acting mutations in the gene encoding the bone morphogenetic protein (BMP) type I receptor, ACVR1 (ALK2), the most prevalent of which results in an arginine to histidine substitution at position 206 (ACVR1[R206H]). The fundamental pathological consequence of FOP-causing ACVR1 receptor mutations is to enable activin A to initiate canonical BMP signaling in fibro-adipogenic progenitors (FAPs), which drives HO. We developed a monoclonal blocking antibody (JAB0505) against the extracellular domain of ACVR1 and tested its effect on HO in 2 independent FOP mouse models. Although JAB0505 inhibited BMP-dependent gene expression in wild-type and ACVR1(R206H)-overexpressing cell lines, JAB0505 treatment profoundly exacerbated injury-induced HO. JAB0505-treated mice exhibited multiple, distinct foci of heterotopic lesions, suggesting an atypically broad anatomical domain of FAP recruitment to endochondral ossification. This was accompanied by dysregulated FAP population growth and an abnormally sustained immunological reaction following muscle injury. JAB0505 drove injury-induced HO in the absence of activin A, indicating that JAB0505 has receptor agonist activity. These data raise serious safety and efficacy concerns for the use of bivalent anti-ACVR1 antibodies to treat patients with FOP.

Authors

John B. Lees-Shepard, Sean J. Stoessel, Julian T. Chandler, Keith Bouchard, Patricia Bento, Lorraine N. Apuzzo, Parvathi M. Devarakonda, Jeffrey W. Hunter, David J. Goldhamer

×

The neuronal tyrosine kinase receptor ligand ALKAL2 mediates persistent pain
Manon Defaye, … , Gerald W. Zamponi, Christophe Altier
Manon Defaye, … , Gerald W. Zamponi, Christophe Altier
Published May 24, 2022
Citation Information: J Clin Invest. 2022;132(12):e154317. https://doi.org/10.1172/JCI154317.
View: Text | PDF

The neuronal tyrosine kinase receptor ligand ALKAL2 mediates persistent pain

  • Text
  • PDF
Abstract

The anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase known for its oncogenic potential that is involved in the development of the peripheral and central nervous system. ALK receptor ligands ALKAL1 and ALKAL2 were recently found to promote neuronal differentiation and survival. Here, we show that inflammation or injury enhanced ALKAL2 expression in a subset of TRPV1+ sensory neurons. Notably, ALKAL2 was particularly enriched in both mouse and human peptidergic nociceptors, yet weakly expressed in nonpeptidergic, large-diameter myelinated neurons or in the brain. Using a coculture expression system, we found that nociceptors exposed to ALKAL2 exhibited heightened excitability and neurite outgrowth. Intraplantar CFA or intrathecal infusion of recombinant ALKAL2 led to ALK phosphorylation in the lumbar dorsal horn of the spinal cord. Finally, depletion of ALKAL2 in dorsal root ganglia or blocking ALK with clinically available compounds crizotinib or lorlatinib reversed thermal hyperalgesia and mechanical allodynia induced by inflammation or nerve injury, respectively. Overall, our work uncovers the ALKAL2/ALK signaling axis as a central regulator of nociceptor-induced sensitization. We propose that clinically approved ALK inhibitors used for non–small cell lung cancer and neuroblastomas could be repurposed to treat persistent pain conditions.

Authors

Manon Defaye, Mircea C. Iftinca, Vinicius M. Gadotti, Lilian Basso, Nasser S. Abdullah, Mélissa Cuménal, Francina Agosti, Ahmed Hassan, Robyn Flynn, Jérémy Martin, Vanessa Soubeyre, Gaetan Poulen, Nicolas Lonjon, Florence Vachiery-Lahaye, Luc Bauchet, Pierre Francois Mery, Emmanuel Bourinet, Gerald W. Zamponi, Christophe Altier

×

Transplanted human cones incorporate into the retina and function in a murine cone degeneration model
Sylvia J. Gasparini, … , Mike O. Karl, Marius Ader
Sylvia J. Gasparini, … , Mike O. Karl, Marius Ader
Published April 28, 2022
Citation Information: J Clin Invest. 2022;132(12):e154619. https://doi.org/10.1172/JCI154619.
View: Text | PDF

Transplanted human cones incorporate into the retina and function in a murine cone degeneration model

  • Text
  • PDF
Abstract

Once human photoreceptors die, they do not regenerate, thus, photoreceptor transplantation has emerged as a potential treatment approach for blinding diseases. Improvements in transplant organization, donor cell maturation, and synaptic connectivity to the host will be critical in advancing this technology for use in clinical practice. Unlike the unstructured grafts of prior cell-suspension transplantations into end-stage degeneration models, we describe the extensive incorporation of induced pluripotent stem cell (iPSC) retinal organoid–derived human photoreceptors into mice with cone dysfunction. This incorporative phenotype was validated in both cone-only as well as pan-photoreceptor transplantations. Rather than forming a glial barrier, Müller cells extended throughout the graft, even forming a series of adherens junctions between mouse and human cells, reminiscent of an outer limiting membrane. Donor-host interaction appeared to promote polarization as well as the development of morphological features critical for light detection, namely the formation of inner and well-stacked outer segments oriented toward the retinal pigment epithelium. Putative synapse formation and graft function were evident at both structural and electrophysiological levels. Overall, these results show that human photoreceptors interacted readily with a partially degenerated retina. Moreover, incorporation into the host retina appeared to be beneficial to graft maturation, polarization, and function.

Authors

Sylvia J. Gasparini, Karen Tessmer, Miriam Reh, Stephanie Wieneke, Madalena Carido, Manuela Völkner, Oliver Borsch, Anka Swiersy, Marta Zuzic, Olivier Goureau, Thomas Kurth, Volker Busskamp, Günther Zeck, Mike O. Karl, Marius Ader

×

Hematopoietic stem cell regeneration through paracrine regulation of the Wnt5a/Prox1 signaling axis
Qiqi Lin, … , Jonathan Joseph, Wei Du
Qiqi Lin, … , Jonathan Joseph, Wei Du
Published June 15, 2022
Citation Information: J Clin Invest. 2022;132(12):e155914. https://doi.org/10.1172/JCI155914.
View: Text | PDF

Hematopoietic stem cell regeneration through paracrine regulation of the Wnt5a/Prox1 signaling axis

  • Text
  • PDF
Abstract

The crosstalk between the BM microenvironment (niche) and hematopoietic stem cells (HSCs) is critical for HSC regeneration. Here, we show that in mice, deletion of the Fanconi anemia (FA) genes Fanca and Fancc dampened HSC regeneration through direct effects on HSCs and indirect effects on BM niche cells. FA HSCs showed persistent upregulation of the Wnt target Prox1 in response to total body irradiation (TBI). Accordingly, lineage-specific deletion of Prox1 improved long-term repopulation of the irradiated FA HSCs. Forced expression of Prox1 in WT HSCs mimicked the defective repopulation phenotype of FA HSCs. WT mice but not FA mice showed significant induction by TBI of BM stromal Wnt5a protein. Mechanistically, FA proteins regulated stromal Wnt5a expression, possibly through modulating the Wnt5a transcription activator Pax2. Wnt5a treatment of irradiated FA mice enhanced HSC regeneration. Conversely, Wnt5a neutralization inhibited HSC regeneration after TBI. Wnt5a secreted by LepR+CXCL12+ BM stromal cells inhibited β-catenin accumulation, thereby repressing Prox1 transcription in irradiated HSCs. The detrimental effect of deregulated Wnt5a/Prox1 signaling on HSC regeneration was also observed in patients with FA and aged mice. Irradiation induced upregulation of Prox1 in the HSCs of aged mice, and deletion of Prox1 in aged HSCs improved HSC regeneration. Treatment of aged mice with Wnt5a enhanced hematopoietic repopulation. Collectively, these findings identified the paracrine Wnt5a/Prox1 signaling axis as a regulator of HSC regeneration under conditions of injury and aging.

Authors

Qiqi Lin, Limei Wu, Srinivas Chatla, Fabliha A. Chowdhury, Neha Atale, Jonathan Joseph, Wei Du

×

A p300/GATA6 axis determines differentiation and Wnt dependency in pancreatic cancer models
Zheng Zhong, … , Babita Madan, David M. Virshup
Zheng Zhong, … , Babita Madan, David M. Virshup
Published May 10, 2022
Citation Information: J Clin Invest. 2022;132(12):e156305. https://doi.org/10.1172/JCI156305.
View: Text | PDF

A p300/GATA6 axis determines differentiation and Wnt dependency in pancreatic cancer models

  • Text
  • PDF
Abstract

Wnt signaling regulates the balance between stemness and differentiation in multiple tissues and in cancer. RNF43-mutant pancreatic cancers are dependent on Wnt production, and pharmacologic blockade of the pathway, e.g., by PORCN inhibitors, leads to tumor differentiation. However, primary resistance to these inhibitors has been observed. To elucidate potential mechanisms, we performed in vivo CRISPR screens in PORCN inhibitor–sensitive RNF43-mutant pancreatic cancer xenografts. As expected, genes in the Wnt pathway whose loss conferred drug resistance were identified, including APC, AXIN1, and CTNNBIP1. Unexpectedly, the screen also identified the histone acetyltransferase EP300 (p300), but not its paralog, CREBBP (CBP). We found that EP300 is silenced due to genetic alterations in all the existing RNF43-mutant pancreatic cancer cell lines that are resistant to PORCN inhibitors. Mechanistically, loss of EP300 directly downregulated GATA6 expression, thereby silencing the GATA6-regulated differentiation program and leading to a phenotypic transition from the classical subtype to the dedifferentiated basal-like/squamous subtype of pancreatic cancer. EP300 mutation and loss of GATA6 function bypassed the antidifferentiation activity of Wnt signaling, rendering these cancer cells resistant to Wnt inhibition.

Authors

Zheng Zhong, Nathan Harmston, Kris C. Wood, Babita Madan, David M. Virshup

×

PD-1 and ICOS coexpression identifies tumor-reactive CD4+ T cells in human solid tumors
Rebekka Duhen, … , Andrew D. Weinberg, Thomas Duhen
Rebekka Duhen, … , Andrew D. Weinberg, Thomas Duhen
Published April 19, 2022
Citation Information: J Clin Invest. 2022;132(12):e156821. https://doi.org/10.1172/JCI156821.
View: Text | PDF

PD-1 and ICOS coexpression identifies tumor-reactive CD4+ T cells in human solid tumors

  • Text
  • PDF
Abstract

CD4+ Th cells play a key role in orchestrating immune responses, but the identity of the CD4+ Th cells involved in the antitumor immune response remains to be defined. We analyzed the immune cell infiltrates of head and neck squamous cell carcinoma and colorectal cancers and identified a subset of CD4+ Th cells distinct from FOXP3+ Tregs that coexpressed programmed cell death 1 (PD-1) and ICOS. These tumor-infiltrating lymphocyte CD4+ Th cells (CD4+ Th TILs) had a tissue-resident memory phenotype, were present in MHC class II–rich areas, and proliferated in the tumor, suggesting local antigen recognition. The T cell receptor repertoire of the PD-1+ICOS+ CD4+ Th TILs was oligoclonal, with T cell clones expanded in the tumor, but present at low frequencies in the periphery. Finally, these PD-1+ICOS+ CD4+ Th TILs were shown to recognize both tumor-associated antigens and tumor-specific neoantigens. Our findings provide an approach for isolating tumor-reactive CD4+ Th TILs directly ex vivo that will help define their role in the antitumor immune response and potentially improve future adoptive T cell therapy approaches.

Authors

Rebekka Duhen, Olivier Fesneau, Kimberly A. Samson, Alexandra K. Frye, Michael Beymer, Venkatesh Rajamanickam, David Ross, Eric Tran, Brady Bernard, Andrew D. Weinberg, Thomas Duhen

×

Siglec-F–expressing neutrophils are essential for creating a profibrotic microenvironment in renal fibrosis
Seungwon Ryu, … , Seung Hee Yang, Hye Young Kim
Seungwon Ryu, … , Seung Hee Yang, Hye Young Kim
Published April 28, 2022
Citation Information: J Clin Invest. 2022;132(12):e156876. https://doi.org/10.1172/JCI156876.
View: Text | PDF

Siglec-F–expressing neutrophils are essential for creating a profibrotic microenvironment in renal fibrosis

  • Text
  • PDF
Abstract

The roles of neutrophils in renal inflammation are currently unclear. On examining these cells in the unilateral ureteral obstruction murine model of chronic kidney disease, we found that the injured kidney bore a large and rapidly expanding population of neutrophils that expressed the eosinophil marker Siglec-F. We first verified that these cells were neutrophils. Siglec-F+ neutrophils were recently detected in several studies in other disease contexts. We then showed that a) these cells were derived from conventional neutrophils in the renal vasculature by TGF-β1 and GM-CSF; b) they differed from their parent cells by more frequent hypersegmentation, higher expression of profibrotic inflammatory cytokines, and notably, expression of collagen 1; and c) their depletion reduced collagen deposition and disease progression, but adoptive transfer increased renal fibrosis. These findings have thus unveiled a subtype of neutrophils that participate in renal fibrosis and a potentially new therapeutic target in chronic kidney disease.

Authors

Seungwon Ryu, Jae Woo Shin, Soie Kwon, Jiwon Lee, Yong Chul Kim, Yoe-Sik Bae, Yong-Soo Bae, Dong Ki Kim, Yon Su Kim, Seung Hee Yang, Hye Young Kim

×

The microbiome restrains melanoma bone growth by promoting intestinal NK and Th1 cell homing to bone
Subhashis Pal, … , M. Neale Weitzmann, Roberto Pacifici
Subhashis Pal, … , M. Neale Weitzmann, Roberto Pacifici
Published May 3, 2022
Citation Information: J Clin Invest. 2022;132(12):e157340. https://doi.org/10.1172/JCI157340.
View: Text | PDF

The microbiome restrains melanoma bone growth by promoting intestinal NK and Th1 cell homing to bone

  • Text
  • PDF
Abstract

Bone metastases are frequent complications of malignant melanoma leading to reduced quality of life and significant morbidity. Regulation of immune cells by the gut microbiome influences cancer progression, but the role of the microbiome in tumor growth in bone is unknown. Using intracardiac or intratibial injections of B16-F10 melanoma cells into mice, we showed that gut microbiome depletion by broad-spectrum antibiotics accelerated intraosseous tumor growth and osteolysis. Microbiome depletion blunted melanoma-induced expansion of intestinal NK cells and Th1 cells and their migration from the gut to tumor-bearing bones. Demonstrating the functional relevance of immune cell trafficking from the gut to the bone marrow (BM) in bone metastasis, blockade of S1P-mediated intestinal egress of NK and Th1 cells, or inhibition of their CXCR3/CXCL9-mediated influx into the BM, prevented the expansion of BM NK and Th1 cells and accelerated tumor growth and osteolysis. Using a mouse model, this study revealed mechanisms of microbiota-mediated gut-bone crosstalk that are relevant to the immunological restraint of melanoma metastasis and tumor growth in bone. Microbiome modifications induced by antibiotics might have negative clinical consequences in patients with melanoma.

Authors

Subhashis Pal, Daniel S. Perrien, Tetsuya Yumoto, Roberta Faccio, Andreea Stoica, Jonathan Adams, Craig M. Coopersmith, Rheinallt M. Jones, M. Neale Weitzmann, Roberto Pacifici

×

FOXA2 suppresses endometrial carcinogenesis and epithelial-mesenchymal transition by regulating enhancer activity
Subhransu S. Sahoo, … , Ram S. Mani, Diego H. Castrillon
Subhransu S. Sahoo, … , Ram S. Mani, Diego H. Castrillon
Published June 15, 2022
Citation Information: J Clin Invest. 2022;132(12):e157574. https://doi.org/10.1172/JCI157574.
View: Text | PDF

FOXA2 suppresses endometrial carcinogenesis and epithelial-mesenchymal transition by regulating enhancer activity

  • Text
  • PDF
Abstract

FOXA2 encodes a transcription factor mutated in 10% of endometrial cancers (ECs), with a higher mutation rate in aggressive variants. FOXA2 has essential roles in embryonic and uterine development. However, FOXA2’s role in EC is incompletely understood. Functional investigations using human and mouse EC cell lines revealed that FOXA2 controls endometrial epithelial gene expression programs regulating cell proliferation, adhesion, and endometrial-epithelial transition. In live animals, conditional inactivation of Foxa2 or Pten alone in endometrial epithelium did not result in ECs, but simultaneous inactivation of both genes resulted in lethal ECs with complete penetrance, establishing potent synergism between Foxa2 and PI3K signaling. Studies in tumor-derived cell lines and organoids highlighted additional invasion and cell growth phenotypes associated with malignant transformation and identified key mediators, including Myc and Cdh1. Transcriptome and cistrome analyses revealed that FOXA2 broadly controls gene expression programs through modification of enhancer activity in addition to regulating specific target genes, rationalizing its tumor suppressor functions. By integrating results from our cell lines, organoids, animal models, and patient data, our findings demonstrated that FOXA2 is an endometrial tumor suppressor associated with aggressive disease and with shared commonalities among its roles in endometrial function and carcinogenesis.

Authors

Subhransu S. Sahoo, Susmita G. Ramanand, Yunpeng Gao, Ahmed Abbas, Ashwani Kumar, Ileana C. Cuevas, Hao-Dong Li, Mitzi Aguilar, Chao Xing, Ram S. Mani, Diego H. Castrillon

×

Antibodies from convalescent plasma promote SARS-CoV-2 clearance in individuals with and without endogenous antibody response
Maddalena Marconato, … , Markus G. Manz, Alexandra Trkola
Maddalena Marconato, … , Markus G. Manz, Alexandra Trkola
Published April 28, 2022
Citation Information: J Clin Invest. 2022;132(12):e158190. https://doi.org/10.1172/JCI158190.
View: Text | PDF Clinical Research and Public Health

Antibodies from convalescent plasma promote SARS-CoV-2 clearance in individuals with and without endogenous antibody response

  • Text
  • PDF
Abstract

BACKGROUND Neutralizing antibodies are considered a key correlate of protection by current SARS-CoV-2 vaccines. The manner in which human infections respond to therapeutic SARS-CoV-2 antibodies, including convalescent plasma therapy, remains to be fully elucidated.METHODS We conducted a proof-of-principle study of convalescent plasma therapy based on a phase I trial in 30 hospitalized COVID-19 patients with a median interval between onset of symptoms and first transfusion of 9 days (IQR, 7–11.8 days). Comprehensive longitudinal monitoring of the virological, serological, and disease status of recipients allowed deciphering of parameters on which plasma therapy efficacy depends.RESULTS In this trial, convalescent plasma therapy was safe as evidenced by the absence of transfusion-related adverse events and low mortality (3.3%). Treatment with highly neutralizing plasma was significantly associated with faster virus clearance, as demonstrated by Kaplan-Meier analysis (P = 0.034) and confirmed in a parametric survival model including viral load and comorbidity (adjusted hazard ratio, 3.0; 95% CI, 1.1–8.1; P = 0.026). The onset of endogenous neutralization affected viral clearance, but even after adjustment for their pretransfusion endogenous neutralization status, recipients benefitted from plasma therapy with high neutralizing antibodies (hazard ratio, 3.5; 95% CI, 1.1–11; P = 0.034).CONCLUSION Our data demonstrate a clear impact of exogenous antibody therapy on the rapid clearance of viremia before and after onset of the endogenous neutralizing response, and point beyond antibody-based interventions to critical laboratory parameters for improved evaluation of current and future SARS-CoV-2 therapies.TRIAL REGISTRATION ClinicalTrials.gov NCT04869072.FUNDING This study was funded via an Innovation Pool project by the University Hospital Zurich; the Swiss Red Cross Glückskette Corona Funding; Pandemiefonds of the UZH Foundation; and the Clinical Research Priority Program “Comprehensive Genomic Pathogen Detection” of the University of Zurich.

Authors

Maddalena Marconato, Irene A. Abela, Anthony Hauser, Magdalena Schwarzmüller, Rheliana Katzensteiner, Dominique L. Braun, Selina Epp, Annette Audigé, Jacqueline Weber, Peter Rusert, Eméry Schindler, Chloé Pasin, Emily West, Jürg Böni, Verena Kufner, Michael Huber, Maryam Zaheri, Stefan Schmutz, Beat M. Frey, Roger D. Kouyos, Huldrych F. Günthard, Markus G. Manz, Alexandra Trkola

×

Favorable vaccine-induced SARS-CoV-2–specific T cell response profile in patients undergoing immune-modifying therapies
Martin Qui, … , Antonio Bertoletti, Ennaliza Salazar
Martin Qui, … , Antonio Bertoletti, Ennaliza Salazar
Published May 10, 2022
Citation Information: J Clin Invest. 2022;132(12):e159500. https://doi.org/10.1172/JCI159500.
View: Text | PDF Clinical Research and Public Health

Favorable vaccine-induced SARS-CoV-2–specific T cell response profile in patients undergoing immune-modifying therapies

  • Text
  • PDF
Abstract

BACKGROUND Patients undergoing immune-modifying therapies demonstrate a reduced humoral response after COVID-19 vaccination, but we lack a proper evaluation of the effect of such therapies on vaccine-induced T cell responses.METHODS We longitudinally characterized humoral and spike-specific T cell responses in patients with inflammatory bowel disease (IBD), who were on antimetabolite therapy (azathioprine or methotrexate), TNF inhibitors, and/or other biologic treatment (anti-integrin or anti-p40) for up to 6 months after completing 2-dose COVID-19 mRNA vaccination.RESULTS We demonstrate that a spike-specific T cell response was not only induced in treated patients with IBD at levels similar to those of healthy individuals, but also sustained at higher magnitude for up to 6 months after vaccination, particularly in those treated with TNF inhibitor therapy. Furthermore, the spike-specific T cell response in these patients was mainly preserved against mutations present in SARS-CoV-2 B.1.1.529 (Omicron) and characterized by a Th1/IL-10 cytokine profile.CONCLUSION Despite the humoral response defects, patients under immune-modifying therapies demonstrated a favorable profile of vaccine-induced T cell responses that might still provide a layer of COVID-19 protection.FUNDING This study was funded by the National Centre for Infectious Diseases (NCID) Catalyst Grant (FY2021ES) and the National Research Fund Competitive Research Programme (NRF-CRP25-2020-0003).

Authors

Martin Qui, Nina Le Bert, Webber Pak Wo Chan, Malcolm Tan, Shou Kit Hang, Smrithi Hariharaputran, Jean Xiang Ying Sim, Jenny Guek Hong Low, Weiling Ng, Wei Yee Wan, Tiing Leong Ang, Antonio Bertoletti, Ennaliza Salazar

×
Corrigendum
Mass cytometry detects H3.3K27M-specific vaccine responses in diffuse midline glioma
Sabine Mueller, … , Michael D. Prados, Hideho Okada
Sabine Mueller, … , Michael D. Prados, Hideho Okada
Published June 15, 2022
Citation Information: J Clin Invest. 2022;132(12):e162283. https://doi.org/10.1172/JCI162283.
View: Text | PDF | Amended Article

Mass cytometry detects H3.3K27M-specific vaccine responses in diffuse midline glioma

  • Text
  • PDF
Abstract

Authors

Sabine Mueller, Jared M. Taitt, Javier E. Villanueva-Meyer, Erin R. Bonner, Takahide Nejo, Rishi R. Lulla, Stewart Goldman, Anu Banerjee, Susan N. Chi, Nicholas S. Whipple, John R. Crawford, Karen Gauvain, Kellie J. Nazemi, Payal B. Watchmaker, Neil D. Almeida, Kaori Okada, Andres M. Salazar, Ryan D. Gilbert, Javad Nazarian, Annette M. Molinaro, Lisa H. Butterfield, Michael D. Prados, Hideho Okada

×
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts