Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Caffeine intake exerts dual genome-wide effects on hippocampal metabolism and learning-dependent transcription
Isabel Paiva, … , Anne-Laurence Boutillier, David Blum
Isabel Paiva, … , Anne-Laurence Boutillier, David Blum
Published May 10, 2022
Citation Information: J Clin Invest. 2022;132(12):e149371. https://doi.org/10.1172/JCI149371.
View: Text | PDF
Research Article Neuroscience

Caffeine intake exerts dual genome-wide effects on hippocampal metabolism and learning-dependent transcription

  • Text
  • PDF
Abstract

Caffeine is the most widely consumed psychoactive substance in the world. Strikingly, the molecular pathways engaged by its regular consumption remain unclear. We herein addressed the mechanisms associated with habitual (chronic) caffeine consumption in the mouse hippocampus using untargeted orthogonal omics techniques. Our results revealed that chronic caffeine exerts concerted pleiotropic effects in the hippocampus at the epigenomic, proteomic, and metabolomic levels. Caffeine lowered metabolism-related processes (e.g., at the level of metabolomics and gene expression) in bulk tissue, while it induced neuron-specific epigenetic changes at synaptic transmission/plasticity-related genes and increased experience-driven transcriptional activity. Altogether, these findings suggest that regular caffeine intake improves the signal-to-noise ratio during information encoding, in part through fine-tuning of metabolic genes, while boosting the salience of information processing during learning in neuronal circuits.

Authors

Isabel Paiva, Lucrezia Cellai, Céline Meriaux, Lauranne Poncelet, Ouada Nebie, Jean-Michel Saliou, Anne-Sophie Lacoste, Anthony Papegaey, Hervé Drobecq, Stéphanie Le Gras, Marion Schneider, Enas M. Malik, Christa E. Müller, Emilie Faivre, Kevin Carvalho, Victoria Gomez-Murcia, Didier Vieau, Bryan Thiroux, Sabiha Eddarkaoui, Thibaud Lebouvier, Estelle Schueller, Laura Tzeplaeff, Iris Grgurina, Jonathan Seguin, Jonathan Stauber, Luisa V. Lopes, Luc Buée, Valérie Buée-Scherrer, Rodrigo A. Cunha, Rima Ait-Belkacem, Nicolas Sergeant, Jean-Sébastien Annicotte, Anne-Laurence Boutillier, David Blum

×

Supplemental table 2 - Download (266.46 KB)

No preview available for this file type: xlsx
Use the download link to access the file.
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts