Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A sublethal ATP11A mutation associated with neurological deterioration causes aberrant phosphatidylcholine flipping in plasma membranes
Katsumori Segawa, Atsuo Kikuchi, Tomoyasu Noji, Yuki Sugiura, Keita Hiraga, Chigure Suzuki, Kazuhiro Haginoya, Yasuko Kobayashi, Mitsuhiro Matsunaga, Yuki Ochiai, Kyoko Yamada, Takuo Nishimura, Shinya Iwasawa, Wataru Shoji, Fuminori Sugihara, Kohei Nishino, Hidetaka Kosako, Masahito Ikawa, Yasuo Uchiyama, Makoto Suematsu, Hiroshi Ishikita, Shigeo Kure, Shigekazu Nagata
Katsumori Segawa, Atsuo Kikuchi, Tomoyasu Noji, Yuki Sugiura, Keita Hiraga, Chigure Suzuki, Kazuhiro Haginoya, Yasuko Kobayashi, Mitsuhiro Matsunaga, Yuki Ochiai, Kyoko Yamada, Takuo Nishimura, Shinya Iwasawa, Wataru Shoji, Fuminori Sugihara, Kohei Nishino, Hidetaka Kosako, Masahito Ikawa, Yasuo Uchiyama, Makoto Suematsu, Hiroshi Ishikita, Shigeo Kure, Shigekazu Nagata
View: Text | PDF
Research Article Cell biology Metabolism

A sublethal ATP11A mutation associated with neurological deterioration causes aberrant phosphatidylcholine flipping in plasma membranes

  • Text
  • PDF
Abstract

ATP11A translocates phosphatidylserine (PtdSer), but not phosphatidylcholine (PtdCho), from the outer to the inner leaflet of plasma membranes, thereby maintaining the asymmetric distribution of PtdSer. Here, we detected a de novo heterozygous point mutation of ATP11A in a patient with developmental delays and neurological deterioration. Mice carrying the corresponding mutation died perinatally of neurological disorders. This mutation caused an amino acid substitution (Q84E) in the first transmembrane segment of ATP11A, and mutant ATP11A flipped PtdCho. Molecular dynamics simulations revealed that the mutation allowed PtdCho binding at the substrate entry site. Aberrant PtdCho flipping markedly decreased the concentration of PtdCho in the outer leaflet of plasma membranes, whereas sphingomyelin (SM) concentrations in the outer leaflet increased. This change in the distribution of phospholipids altered cell characteristics, including cell growth, cholesterol homeostasis, and sensitivity to sphingomyelinase. Matrix-assisted laser desorption ionization–imaging mass spectrometry (MALDI-IMS) showed a marked increase of SM levels in the brains of Q84E-knockin mouse embryos. These results provide insights into the physiological importance of the substrate specificity of plasma membrane flippases for the proper distribution of PtdCho and SM.

Authors

Katsumori Segawa, Atsuo Kikuchi, Tomoyasu Noji, Yuki Sugiura, Keita Hiraga, Chigure Suzuki, Kazuhiro Haginoya, Yasuko Kobayashi, Mitsuhiro Matsunaga, Yuki Ochiai, Kyoko Yamada, Takuo Nishimura, Shinya Iwasawa, Wataru Shoji, Fuminori Sugihara, Kohei Nishino, Hidetaka Kosako, Masahito Ikawa, Yasuo Uchiyama, Makoto Suematsu, Hiroshi Ishikita, Shigeo Kure, Shigekazu Nagata

×

Figure 2

Identification of the Q84E mutation.

Options: View larger image (or click on image) Download as PowerPoint
Identification of the Q84E mutation.
(A) DNA sequences for the patient a...
(A) DNA sequences for the patient and his parents. (B) Structure of ATP11A with Q84E highlighted. Transmembrane (TM) segments are numbered. At the bottom, the amino acid sequences of ATP11A from various species are aligned. TM regions are highlighted in green and Q84 in red. Conserved residues are indicated by an asterisk. (C) Left: ATP11A mRNA levels in skin fibroblasts from a healthy individual (control) and the patient. mRNA levels are expressed relative to those of the ribosomal protein 36B4. Right: cDNA sequences for ATP11A mRNA in skin fibroblasts. The heterozygous mutation is indicated by an arrow.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts