Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Single-cell RNA sequencing reveals induction of distinct trained-immunity programs in human monocytes
Bowen Zhang, … , Mihai G. Netea, Yang Li
Bowen Zhang, … , Mihai G. Netea, Yang Li
Published February 8, 2022
Citation Information: J Clin Invest. 2022;132(7):e147719. https://doi.org/10.1172/JCI147719.
View: Text | PDF
Research Article Immunology Infectious disease

Single-cell RNA sequencing reveals induction of distinct trained-immunity programs in human monocytes

  • Text
  • PDF
Abstract

Trained immunity refers to the long-lasting memory traits of innate immunity. Recent studies have shown that trained immunity is orchestrated by sustained changes in epigenetic marks and metabolic pathways, leading to an altered transcriptional response to a second challenge. However, the potential heterogeneity of trained-immunity induction in innate immune cells has not been explored. In this study, we demonstrate cellular transcriptional programs in response to 4 different inducers of trained immunity in monocyte populations at single-cell resolution. Specifically, we identified 3 monocyte subpopulations upon the induction of trained immunity, and replicated these findings in an in vivo study. In addition, we found gene signatures consistent with these functional programs in patients with ulcerative colitis, sepsis, and COVID-19, suggesting the impact of trained-immunity programs in immune-mediated diseases.

Authors

Bowen Zhang, Simone J.C.F.M Moorlag, Jorge Dominguez-Andres, Özlem Bulut, Gizem Kilic, Zhaoli Liu, Reinout van Crevel, Cheng-Jian Xu, Leo A.B. Joosten, Mihai G. Netea, Yang Li

×

Figure 8

Cell-cell interaction in inducing the trained-immunity transcriptional responses.

Options: View larger image (or click on image) Download as PowerPoint
Cell-cell interaction in inducing the trained-immunity transcriptional r...
(A) Dot heatmap of the top 15 predicted ligands and heatmap of respective target genes regulated by top-ranked ligands. (B) A circos plot shows the predicted top ligands from sender cells and their target genes from different receiver cells.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts