Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Age-specific effects of vaccine egg adaptation and immune priming on A(H3N2) antibody responses following influenza vaccination
Feng Liu, … , Bin Zhou, Min Z. Levine
Feng Liu, … , Bin Zhou, Min Z. Levine
Published March 9, 2021
Citation Information: J Clin Invest. 2021;131(8):e146138. https://doi.org/10.1172/JCI146138.
View: Text | PDF
Research Article Infectious disease Vaccines

Age-specific effects of vaccine egg adaptation and immune priming on A(H3N2) antibody responses following influenza vaccination

  • Text
  • PDF
Abstract

A(H3N2) influenza vaccine effectiveness (VE) was low during the 2016–19 seasons and varied by age. We analyzed neutralizing antibody responses to egg- and cell-propagated A(H3N2) vaccine and circulating viruses following vaccination in 375 individuals (aged 7 months to 82 years) across all vaccine-eligible age groups in 3 influenza seasons. Antibody responses to cell- versus egg-propagated vaccine viruses were significantly reduced due to the egg-adapted changes T160K, D225G, and L194P in the vaccine hemagglutinins. Vaccine egg adaptation had a differential impact on antibody responses across the different age groups. Immunologically naive children immunized with egg-adapted vaccines mostly mounted antibodies targeting egg-adapted epitopes, whereas those previously primed with infection produced broader responses even when vaccinated with egg-based vaccines. In the elderly, repeated boosts of vaccine egg-adapted epitopes significantly reduced antibody responses to the WT cell–grown viruses. Analysis with reverse genetic viruses suggested that the response to each egg-adapted substitution varied by age. No differences in antibody responses were observed between male and female vaccinees. Here, the combination of age-specific responses to vaccine egg-adapted substitutions, diverse host immune priming histories, and virus antigenic drift affected antibody responses following vaccination and may have led to the low and variable VE against A(H3N2) viruses across different age groups.

Authors

Feng Liu, F. Liaini Gross, Stacie N. Jefferson, Crystal Holiday, Yaohui Bai, Li Wang, Bin Zhou, Min Z. Levine

×
Options: View larger image (or click on image) Download as PowerPoint
Potential imprinting sites on the HA head domain associated with egg-ada...

Potential imprinting sites on the HA head domain associated with egg-adapted changes in the 2016–19 seasonal influenza A(H3N2) vaccine strains


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts