PRAME is a prominent member of the cancer testis antigen family of proteins, which triggers autologous T cell–mediated immune responses. Integrative genomic analysis in diffuse large B cell lymphoma (DLBCL) uncovered recurrent and highly focal deletions of 22q11.22, including the PRAME gene, which were associated with poor outcome. PRAME-deleted tumors showed cytotoxic T cell immune escape and were associated with cold tumor microenvironments. In addition, PRAME downmodulation was strongly associated with somatic EZH2 Y641 mutations in DLBCL. In turn, PRC2-regulated genes were repressed in isogenic PRAME-KO lymphoma cell lines, and PRAME was found to directly interact with EZH2 as a negative regulator. EZH2 inhibition with EPZ-6438 abrogated these extrinsic and intrinsic effects, leading to PRAME expression and microenvironment restoration in vivo. Our data highlight multiple functions of PRAME during lymphomagenesis and provide a preclinical rationale for synergistic therapies combining epigenetic reprogramming with PRAME-targeted therapies.
Katsuyoshi Takata, Lauren C. Chong, Daisuke Ennishi, Tomohiro Aoki, Michael Yu Li, Avinash Thakur, Shannon Healy, Elena Viganò, Tao Dao, Daniel Kwon, Gerben Duns, Julie S. Nielsen, Susana Ben-Neriah, Ethan Tse, Stacy S. Hung, Merrill Boyle, Sung Soo Mun, Christopher M. Bourne, Bruce Woolcock, Adèle Telenius, Makoto Kishida, Shinya Rai, Allen W. Zhang, Ali Bashashati, Saeed Saberi, Gianluca D’Antonio, Brad H. Nelson, Sohrab P. Shah, Pamela A. Hoodless, Ari M. Melnick, Randy D. Gascoyne, Joseph M. Connors, David A. Scheinberg, Wendy Béguelin, David W. Scott, Christian Steidl
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,287 | 415 |
137 | 61 | |
Figure | 403 | 9 |
Supplemental data | 117 | 9 |
Citation downloads | 87 | 0 |
Totals | 2,031 | 494 |
Total Views | 2,525 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.