Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Blocking Borrelia burgdorferi transmission from infected ticks to nonhuman primates with a human monoclonal antibody
Zachary A. Schiller, … , Mark S. Klempner, Yang Wang
Zachary A. Schiller, … , Mark S. Klempner, Yang Wang
Published April 29, 2021
Citation Information: J Clin Invest. 2021;131(11):e144843. https://doi.org/10.1172/JCI144843.
View: Text | PDF
Research Article Immunology Infectious disease

Blocking Borrelia burgdorferi transmission from infected ticks to nonhuman primates with a human monoclonal antibody

  • Text
  • PDF
Abstract

Disrupting transmission of Borrelia burgdorferi sensu lato complex (B. burgdorferi) from infected ticks to humans is one strategy to prevent the significant morbidity from Lyme disease. We have previously shown that an anti-OspA human mAb, 2217, prevents transmission of B. burgdorferi from infected ticks in animal models. Maintenance of a protective plasma concentration of a human mAb for tick season presents a significant challenge for a preexposure prophylaxis strategy. Here, we describe the optimization of mAb 2217 by amino acid substitutions (2217LS: M428L and N434S) in the Fc domain. The LS mutation led to a 2-fold increase in half-life in cynomolgus monkeys. In a rhesus macaque model, 2217LS protected animals from tick transmission of spirochetes at a dose of 3 mg/kg. Crystallographic analysis of Fab in complex with OspA revealed that 2217 bound an epitope that was highly conserved among the B. burgdorferi, B. garinii, and B. afzelii species. Unlike most vaccines that may require boosters to achieve protection, our work supports the development of 2217LS as an effective preexposure prophylaxis in Lyme-endemic regions, with a single dose at the beginning of tick season offering immediate protection that remains for the duration of exposure risk.

Authors

Zachary A. Schiller, Michael J. Rudolph, Jacqueline R. Toomey, Monir Ejemel, Alan LaRochelle, Simon A. Davis, Havard S. Lambert, Aurélie Kern, Amanda C. Tardo, Colby A. Souders, Eric Peterson, Rebecca D. Cannon, Chandrashekar Ganesa, Frank Fazio, Nicholas J. Mantis, Lisa A. Cavacini, John Sullivan-Bolyai, Linden T. Hu, Monica E. Embers, Mark S. Klempner, Yang Wang

×
Options: View larger image (or click on image) Download as PowerPoint
Detection of B. burgdorferi transmission in nonhuman primates

Detection of B. burgdorferi transmission in nonhuman primates


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts