Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Usage Information

The pyruvate kinase activator mitapivat reduces hemolysis and improves anemia in a β-thalassemia mouse model
Alessandro Matte, … , Carlo Brugnara, Lucia De Franceschi
Alessandro Matte, … , Carlo Brugnara, Lucia De Franceschi
Published April 6, 2021
Citation Information: J Clin Invest. 2021. https://doi.org/10.1172/JCI144206.
View: Text | PDF
Research In-Press Preview Hematology

The pyruvate kinase activator mitapivat reduces hemolysis and improves anemia in a β-thalassemia mouse model

  • Text
  • PDF
Abstract

Anemia in β-thalassemia is related to ineffective erythropoiesis and reduced red cell survival. Excess free heme and accumulation of unpaired α-globin chains impose substantial oxidative stress on β-thalassemic erythroblasts and erythrocytes, impacting cell metabolism. We hypothesized that increased pyruvate kinase activity induced by mitapivat (AG-348) in the Hbbth3/+ mouse model for β-thalassemia would reduce chronic hemolysis and ineffective erythropoiesis through stimulation of red cell glycolytic metabolism. Oral mitapivat administration ameliorated ineffective erythropoiesis and anemia in Hbbth3/+ mice. Increased ATP, reduced reactive oxygen species production, and reduced markers of mitochondrial dysfunction associated with improved mitochondrial clearance suggested enhanced metabolism following mitapivat administration in β-thalassemia. The amelioration of responsiveness to erythropoietin resulted in reduced soluble erythroferrone, increased liver Hamp expression, and diminished liver iron overload. Mitapivat reduced duodenal Dmt1 expression potentially by activating the pyruvate kinase M2HIF2α axis, representing a mechanism additional to Hamp in controlling iron absorption and preventing β-thalassemia–related liver iron overload. In ex vivo studies on erythroid precursors from patients with β-thalassemia, mitapivat enhanced erythropoiesis, promoted erythroid maturation, and decreased apoptosis. Overall, pyruvate kinase activation as a treatment modality for β-thalassemia in preclinical model systems had multiple beneficial effects in the erythropoietic compartment and beyond, providing a strong scientific basis for further clinical trials.

Authors

Alessandro Matte, Enrica Federti, Charles Kung, Penelope A. Kosinski, Rohini Narayanaswamy, Roberta Russo, Giorgia Federico, Francesca Carlomagno, Maria Andrea Desbats, Leonardo Salviati, Christophe Leboeuf, Maria Teresa Valenti, Francesco Turrini, Anne Janin, Shaoxia Yu, Elisabetta Beneduce, Sebastien Ronseaux, Iana Iatcenko, Lenny Dang, Tomas Ganz, Chun-Ling Jung, Achille Iolascon, Carlo Brugnara, Lucia De Franceschi

×

Usage data is cumulative from April 2021 through April 2021.

Usage JCI PMC
Text version 289 0
PDF 173 0
Supplemental data 26 0
Citation downloads 4 0
Totals 492 0
Total Views 492

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts