Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Upcoming)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

TNFR2/14-3-3ε signaling complex instructs macrophage plasticity in inflammation and autoimmunity
Wenyu Fu, … , Png Loke, Chuan-ju Liu
Wenyu Fu, … , Png Loke, Chuan-ju Liu
Published June 29, 2021
Citation Information: J Clin Invest. 2021;131(16):e144016. https://doi.org/10.1172/JCI144016.
View: Text | PDF
Research Article Autoimmunity Inflammation

TNFR2/14-3-3ε signaling complex instructs macrophage plasticity in inflammation and autoimmunity

  • Text
  • PDF
Abstract

TNFR1 and TNFR2 have received prominent attention because of their dominance in the pathogenesis of inflammation and autoimmunity. TNFR1 has been extensively studied and primarily mediates inflammation. TNFR2 remains far less studied, although emerging evidence demonstrates that TNFR2 plays an antiinflammatory and immunoregulatory role in various conditions and diseases. Herein, we report that TNFR2 regulates macrophage polarization, a highly dynamic process controlled by largely unidentified intracellular regulators. Using biochemical copurification and mass spectrometry approaches, we isolated the signaling molecule 14-3-3ε as a component of TNFR2 complexes in response to progranulin stimulation in macrophages. In addition, 14-3-3ε was essential for TNFR2 signaling–mediated regulation of macrophage polarization and switch. Both global and myeloid-specific deletion of 14-3-3ε resulted in exacerbated inflammatory arthritis and counteracted the protective effects of progranulin-mediated TNFR2 activation against inflammation and autoimmunity. TNFR2/14-3-3ε signaled through PI3K/Akt/mTOR to restrict NF-κB activation while simultaneously stimulating C/EBPβ activation, thereby instructing macrophage plasticity. Collectively, this study identifies 14-3-3ε as a previously unrecognized vital component of the TNFR2 receptor complex and provides new insights into the TNFR2 signaling, particularly its role in macrophage polarization with therapeutic implications for various inflammatory and autoimmune diseases with activation of the TNFR2/14-3-3ε antiinflammatory pathway.

Authors

Wenyu Fu, Wenhuo Hu, Young-Su Yi, Aubryanna Hettinghouse, Guodong Sun, Yufei Bi, Wenjun He, Lei Zhang, Guanmin Gao, Jody Liu, Kazuhito Toyo-oka, Guozhi Xiao, David B. Solit, Png Loke, Chuan-ju Liu

×

Usage data is cumulative from January 2022 through January 2023.

Usage JCI PMC
Text version 3,949 562
PDF 653 222
Figure 620 6
Supplemental data 260 30
Citation downloads 105 0
Totals 5,587 820
Total Views 6,407

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts