Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Endoplasmic reticulum–associated degradation is required for nephrin maturation and kidney glomerular filtration function
Sei Yoshida, Xiaoqiong Wei, Gensheng Zhang, Christopher L. O’Connor, Mauricio Torres, Zhangsen Zhou, Liangguang Lin, Rajasree Menon, Xiaoxi Xu, Wenyue Zheng, Yi Xiong, Edgar Otto, Chih-Hang Anthony Tang, Rui Hua, Rakesh Verma, Hiroyuki Mori, Yang Zhang, Chih-Chi Andrew Hu, Ming Liu, Puneet Garg, Jeffrey B. Hodgin, Shengyi Sun, Markus Bitzer, Ling Qi
Sei Yoshida, Xiaoqiong Wei, Gensheng Zhang, Christopher L. O’Connor, Mauricio Torres, Zhangsen Zhou, Liangguang Lin, Rajasree Menon, Xiaoxi Xu, Wenyue Zheng, Yi Xiong, Edgar Otto, Chih-Hang Anthony Tang, Rui Hua, Rakesh Verma, Hiroyuki Mori, Yang Zhang, Chih-Chi Andrew Hu, Ming Liu, Puneet Garg, Jeffrey B. Hodgin, Shengyi Sun, Markus Bitzer, Ling Qi
View: Text | PDF
Research Article Cell biology Nephrology

Endoplasmic reticulum–associated degradation is required for nephrin maturation and kidney glomerular filtration function

  • Text
  • PDF
Abstract

Podocytes are key to the glomerular filtration barrier by forming a slit diaphragm between interdigitating foot processes; however, the molecular details and functional importance of protein folding and degradation in the ER remain unknown. Here, we show that the SEL1L-HRD1 protein complex of ER-associated degradation (ERAD) is required for slit diaphragm formation and glomerular filtration function. SEL1L-HRD1 ERAD is highly expressed in podocytes of both mouse and human kidneys. Mice with podocyte-specific Sel1L deficiency develop podocytopathy and severe congenital nephrotic syndrome with an impaired slit diaphragm shortly after weaning and die prematurely, with a median lifespan of approximately 3 months. We show mechanistically that nephrin, a type 1 membrane protein causally linked to congenital nephrotic syndrome, is an endogenous ERAD substrate. ERAD deficiency attenuated the maturation of nascent nephrin, leading to its retention in the ER. We also show that various autosomal-recessive nephrin disease mutants were highly unstable and broken down by SEL1L-HRD1 ERAD, which attenuated the pathogenicity of the mutants toward the WT allele. This study uncovers a critical role of SEL1L-HRD1 ERAD in glomerular filtration barrier function and provides insights into the pathogenesis associated with autosomal-recessive disease mutants.

Authors

Sei Yoshida, Xiaoqiong Wei, Gensheng Zhang, Christopher L. O’Connor, Mauricio Torres, Zhangsen Zhou, Liangguang Lin, Rajasree Menon, Xiaoxi Xu, Wenyue Zheng, Yi Xiong, Edgar Otto, Chih-Hang Anthony Tang, Rui Hua, Rakesh Verma, Hiroyuki Mori, Yang Zhang, Chih-Chi Andrew Hu, Ming Liu, Puneet Garg, Jeffrey B. Hodgin, Shengyi Sun, Markus Bitzer, Ling Qi

×

Figure 4

SEL1L is required for the formation of the slit diaphragm.

Options: View larger image (or click on image) Download as PowerPoint
SEL1L is required for the formation of the slit diaphragm.
(A–C) Represe...
(A–C) Representative SEM images of glomeruli from 3-week-old mice (A) (n = 9 Sel1Lfl/fl and n = 10 Sel1LPodCre glomeruli); 5-week-old mice (B) (n = 12 Sel1Lfl/fl and n = 16 Sel1LPodCre glomeruli); and 10-week-old mice (C) (n = 9 Sel1Lfl/fl and n = 5 Sel1LPodCre glomeruli). n = 2 mice/genotype. Scale bars: 10 μm and 1 μm (enlarged insets). (D and E) Representative TEM images of glomeruli from 3-week-old mice (D) (n = 3 glomeruli each) and 5-week-old mice (E) (n = 6 glomeruli each). n = 2 mice/genotype. Asterisks indicate mesangial cell hyperplasia; arrows indicate FP fusion. Scale bars: 4 μm (D), 8 μm (E), and 600 nm (enlarged insets in D and E). (F) Representative TEM images of slit diaphragms (white arrows). Scale bar: 100 nm. (G) Diagram illustrating the key proteins involved in the slit diaphragm and ERAD. (H) Representative images of advanced SEM images showing slit diaphragms (red arrows) in 5-week-old mice (n = 7 glomeruli each). n = 2 mice/genotype. Scale bars: 10 μm and 200 nm (enlarged insets). CB, cell body of podocytes; CL, capillary lumen; US, urinary space; Endo, endothelial cells.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts