Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Growth factor activation of the estrogen receptor in vascular cells occurs via a mitogen-activated protein kinase-independent pathway.
R H Karas, … , W E Baur, M E Mendelsohn
R H Karas, … , W E Baur, M E Mendelsohn
Published June 15, 1998
Citation Information: J Clin Invest. 1998;101(12):2851-2861. https://doi.org/10.1172/JCI1416.
View: Text | PDF
Research Article

Growth factor activation of the estrogen receptor in vascular cells occurs via a mitogen-activated protein kinase-independent pathway.

  • Text
  • PDF
Abstract

The classical estrogen receptor ERalpha mediates many of the known cardiovascular effects of estrogen and is expressed in male and female vascular cells. Estrogen-independent activation of ERalpha is known to occur in cells from reproductive tissues, but has not been investigated previously in vascular cells. In this study, transient transfection assays in human saphenous vein smooth muscle cells (HSVSMC) and pulmonary vein endothelial cells (PVEC) demonstrated ERalpha-dependent activation of estrogen response element-based, and vascular endothelial growth factor-based reporter plasmids by both estrogen-deficient FBS (ED-FBS) and EGF. In nonvascular cells, ERalpha-mediated gene expression can be activated via mitogen-activated protein (MAP) kinase- induced phosphorylation of serine 118 of ERalpha. However, in vascular cells, we found that pharmacologic inhibition of MAP kinase did not alter EGF-mediated ERalpha activation. In addition, a mutant ER containing an alanine-for-serine substitution at position 118 was activated to the same degree as the wild-type receptor by ED-FBS and EGF in both HSVSMC and PVEC. Furthermore, constitutively active MAP kinase kinase (MAPKK) activated ERalpha in Cos1 cells as expected, but MAPKK inhibited ER activation in PVEC. We conclude that growth factors also stimulate ERalpha-mediated gene expression in vascular cells, but find that this occurs via a MAP kinase-independent pathway distinct from that reported previously in nonvascular cells.

Authors

R H Karas, E A Gauer, H E Bieber, W E Baur, M E Mendelsohn

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 165 25
PDF 51 18
Citation downloads 71 0
Totals 287 43
Total Views 330
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts