Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI1416

Growth factor activation of the estrogen receptor in vascular cells occurs via a mitogen-activated protein kinase-independent pathway.

R H Karas, E A Gauer, H E Bieber, W E Baur, and M E Mendelsohn

Molecular Cardiology Research Center, Tupper Research Institute, New England Medical Center/Tufts University School of Medicine, Boston, Massachusetts 02111, USA. richard.karas@es.nemc.org

Find articles by Karas, R. in: JCI | PubMed | Google Scholar

Molecular Cardiology Research Center, Tupper Research Institute, New England Medical Center/Tufts University School of Medicine, Boston, Massachusetts 02111, USA. richard.karas@es.nemc.org

Find articles by Gauer, E. in: JCI | PubMed | Google Scholar

Molecular Cardiology Research Center, Tupper Research Institute, New England Medical Center/Tufts University School of Medicine, Boston, Massachusetts 02111, USA. richard.karas@es.nemc.org

Find articles by Bieber, H. in: JCI | PubMed | Google Scholar

Molecular Cardiology Research Center, Tupper Research Institute, New England Medical Center/Tufts University School of Medicine, Boston, Massachusetts 02111, USA. richard.karas@es.nemc.org

Find articles by Baur, W. in: JCI | PubMed | Google Scholar

Molecular Cardiology Research Center, Tupper Research Institute, New England Medical Center/Tufts University School of Medicine, Boston, Massachusetts 02111, USA. richard.karas@es.nemc.org

Find articles by Mendelsohn, M. in: JCI | PubMed | Google Scholar

Published June 15, 1998 - More info

Published in Volume 101, Issue 12 on June 15, 1998
J Clin Invest. 1998;101(12):2851–2861. https://doi.org/10.1172/JCI1416.
© 1998 The American Society for Clinical Investigation
Published June 15, 1998 - Version history
View PDF
Abstract

The classical estrogen receptor ERalpha mediates many of the known cardiovascular effects of estrogen and is expressed in male and female vascular cells. Estrogen-independent activation of ERalpha is known to occur in cells from reproductive tissues, but has not been investigated previously in vascular cells. In this study, transient transfection assays in human saphenous vein smooth muscle cells (HSVSMC) and pulmonary vein endothelial cells (PVEC) demonstrated ERalpha-dependent activation of estrogen response element-based, and vascular endothelial growth factor-based reporter plasmids by both estrogen-deficient FBS (ED-FBS) and EGF. In nonvascular cells, ERalpha-mediated gene expression can be activated via mitogen-activated protein (MAP) kinase- induced phosphorylation of serine 118 of ERalpha. However, in vascular cells, we found that pharmacologic inhibition of MAP kinase did not alter EGF-mediated ERalpha activation. In addition, a mutant ER containing an alanine-for-serine substitution at position 118 was activated to the same degree as the wild-type receptor by ED-FBS and EGF in both HSVSMC and PVEC. Furthermore, constitutively active MAP kinase kinase (MAPKK) activated ERalpha in Cos1 cells as expected, but MAPKK inhibited ER activation in PVEC. We conclude that growth factors also stimulate ERalpha-mediated gene expression in vascular cells, but find that this occurs via a MAP kinase-independent pathway distinct from that reported previously in nonvascular cells.

Version history
  • Version 1 (June 15, 1998): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts