Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Growth factor activation of the estrogen receptor in vascular cells occurs via a mitogen-activated protein kinase-independent pathway.
R H Karas, … , W E Baur, M E Mendelsohn
R H Karas, … , W E Baur, M E Mendelsohn
Published June 15, 1998
Citation Information: J Clin Invest. 1998;101(12):2851-2861. https://doi.org/10.1172/JCI1416.
View: Text | PDF
Research Article

Growth factor activation of the estrogen receptor in vascular cells occurs via a mitogen-activated protein kinase-independent pathway.

  • Text
  • PDF
Abstract

The classical estrogen receptor ERalpha mediates many of the known cardiovascular effects of estrogen and is expressed in male and female vascular cells. Estrogen-independent activation of ERalpha is known to occur in cells from reproductive tissues, but has not been investigated previously in vascular cells. In this study, transient transfection assays in human saphenous vein smooth muscle cells (HSVSMC) and pulmonary vein endothelial cells (PVEC) demonstrated ERalpha-dependent activation of estrogen response element-based, and vascular endothelial growth factor-based reporter plasmids by both estrogen-deficient FBS (ED-FBS) and EGF. In nonvascular cells, ERalpha-mediated gene expression can be activated via mitogen-activated protein (MAP) kinase- induced phosphorylation of serine 118 of ERalpha. However, in vascular cells, we found that pharmacologic inhibition of MAP kinase did not alter EGF-mediated ERalpha activation. In addition, a mutant ER containing an alanine-for-serine substitution at position 118 was activated to the same degree as the wild-type receptor by ED-FBS and EGF in both HSVSMC and PVEC. Furthermore, constitutively active MAP kinase kinase (MAPKK) activated ERalpha in Cos1 cells as expected, but MAPKK inhibited ER activation in PVEC. We conclude that growth factors also stimulate ERalpha-mediated gene expression in vascular cells, but find that this occurs via a MAP kinase-independent pathway distinct from that reported previously in nonvascular cells.

Authors

R H Karas, E A Gauer, H E Bieber, W E Baur, M E Mendelsohn

×

Full Text PDF | Download (427.40 KB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts