Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Endothelial FGF signaling is protective in hypoxia-induced pulmonary hypertension
Kel Vin Woo, … , Derek E. Byers, David M. Ornitz
Kel Vin Woo, … , Derek E. Byers, David M. Ornitz
Published September 1, 2021
Citation Information: J Clin Invest. 2021;131(17):e141467. https://doi.org/10.1172/JCI141467.
View: Text | PDF
Research Article Cell biology Vascular biology

Endothelial FGF signaling is protective in hypoxia-induced pulmonary hypertension

  • Text
  • PDF
Abstract

Hypoxia-induced pulmonary hypertension (PH) is one of the most common and deadliest forms of PH. Fibroblast growth factor receptors 1 and 2 (FGFR1/2) are elevated in patients with PH and in mice exposed to chronic hypoxia. Endothelial FGFR1/2 signaling is important for the adaptive response to several injury types and we hypothesized that endothelial FGFR1/2 signaling would protect against hypoxia-induced PH. Mice lacking endothelial FGFR1/2, mice with activated endothelial FGFR signaling, and human pulmonary artery endothelial cells (HPAECs) were challenged with hypoxia. We assessed the effect of FGFR activation and inhibition on right ventricular pressure, vascular remodeling, and endothelial-mesenchymal transition (EndMT), a known pathologic change seen in patients with PH. Hypoxia-exposed mice lacking endothelial FGFRs developed increased PH, while mice overexpressing a constitutively active FGFR in endothelial cells did not develop PH. Mechanistically, lack of endothelial FGFRs or inhibition of FGFRs in HPAECs led to increased TGF-β signaling and increased EndMT in response to hypoxia. These phenotypes were reversed in mice with activated endothelial FGFR signaling, suggesting that FGFR signaling inhibits TGF-β pathway–mediated EndMT during chronic hypoxia. Consistent with these observations, lung tissue from patients with PH showed activation of FGFR and TGF-β signaling. Collectively, these data suggest that activation of endothelial FGFR signaling could be therapeutic for hypoxia-induced PH.

Authors

Kel Vin Woo, Isabel Y. Shen, Carla J. Weinheimer, Attila Kovacs, Jessica Nigro, Chieh-Yu Lin, Murali Chakinala, Derek E. Byers, David M. Ornitz

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts