Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
PD-1 blockade improves Kupffer cell bacterial clearance in acute liver injury
Evangelos Triantafyllou, … , Charalambos G. Antoniades, Mark R. Thursz
Evangelos Triantafyllou, … , Charalambos G. Antoniades, Mark R. Thursz
Published December 15, 2020
Citation Information: J Clin Invest. 2021;131(4):e140196. https://doi.org/10.1172/JCI140196.
View: Text | PDF
Research Article Hepatology Immunology

PD-1 blockade improves Kupffer cell bacterial clearance in acute liver injury

  • Text
  • PDF
Abstract

Patients with acute liver failure (ALF) have systemic innate immune suppression and increased susceptibility to infections. Programmed cell death 1 (PD-1) expression by macrophages has been associated with immune suppression during sepsis and cancer. We therefore examined the role of the programmed cell death 1/programmed death ligand 1 (PD-1/PD-L1) pathway in regulating Kupffer cell (KC) inflammatory and antimicrobial responses in acetaminophen-induced (APAP-induced) acute liver injury. Using intravital imaging and flow cytometry, we found impaired KC bacterial clearance and systemic bacterial dissemination in mice with liver injury. We detected increased PD-1 and PD-L1 expression in KCs and lymphocyte subsets, respectively, during injury resolution. Gene expression profiling of PD-1+ KCs revealed an immune-suppressive profile and reduced pathogen responses. Compared with WT mice, PD-1–deficient mice and anti–PD-1–treated mice with liver injury showed improved KC bacterial clearance, a reduced tissue bacterial load, and protection from sepsis. Blood samples from patients with ALF revealed enhanced PD-1 and PD-L1 expression by monocytes and lymphocytes, respectively, and that soluble PD-L1 plasma levels could predict outcomes and sepsis. PD-1 in vitro blockade restored monocyte functionality. Our study describes a role for the PD-1/PD-L1 axis in suppressing KC and monocyte antimicrobial responses after liver injury and identifies anti–PD-1 immunotherapy as a strategy to reduce infection susceptibility in ALF.

Authors

Evangelos Triantafyllou, Cathrin L.C. Gudd, Marie-Anne Mawhin, Hannah C. Husbyn, Francesca M. Trovato, Matthew K. Siggins, Thomas O’Connor, Hiromi Kudo, Sujit K. Mukherjee, Julia A. Wendon, Christine Bernsmeier, Robert D. Goldin, Marina Botto, Wafa Khamri, Mark J.W. McPhail, Lucia A. Possamai, Kevin J. Woollard, Charalambos G. Antoniades, Mark R. Thursz

×

Figure 4

PD-1–expressing KCs exhibit an immune-suppressive profile during the resolution of acute liver injury.

Options: View larger image (or click on image) Download as PowerPoint
PD-1–expressing KCs exhibit an immune-suppressive profile during the res...
PD-1+ and PD-1– KC subsets were sorted from livers of APAP-treated (72 h) WT mice using flow cytometry (n = 4 each). KC lysates were assessed for mRNA expression using the NanoString nCounter system (Mouse Myeloid Innate Immunity Panel). Data show comparison of PD-1+ with PD-1– cells (baseline). (A) Representative flow cytometric gating strategy used to sort the PD-1+ and PD-1– cell subsets. (B) Pathway scoring of PD-1+ and PD-1– KCs performed using nCounter Advanced Analysis. (C) Phagocytosis (uptake) of E. coli pHrodo was assessed by flow cytometry in PD-1+ and PD-1– KC subsets (APAP, 72 h) (n = 6 per group). *P < 0.05, by Wilcoxon paired test. Results are from 2 independent experiments. (D and E) Data show log2 fold change of normalized linear count data (PD-1+ subset, n = 4) for significantly differentially expressed genes (based on nCounter Advanced Analysis) in various pathways. A Benjamini-Hochberg P value adjustment was applied. Statistical significance was set at P < 0.05 and a 2-fold linear change. Data are presented as the mean ± SEM.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts