Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Endoplasmic reticulum stress sensor IRE1α propels neutrophil hyperactivity in lupus
Gautam Sule, … , Mary X. O’Riordan, Jason S. Knight
Gautam Sule, … , Mary X. O’Riordan, Jason S. Knight
Published February 9, 2021
Citation Information: J Clin Invest. 2021;131(7):e137866. https://doi.org/10.1172/JCI137866.
View: Text | PDF
Research Article Autoimmunity Immunology

Endoplasmic reticulum stress sensor IRE1α propels neutrophil hyperactivity in lupus

  • Text
  • PDF
Abstract

Neutrophils amplify inflammation in lupus through the release of neutrophil extracellular traps (NETs). The endoplasmic reticulum stress sensor inositol-requiring enzyme 1 α (IRE1α) has been implicated as a perpetuator of inflammation in various chronic diseases; however, IRE1α has been little studied in relation to neutrophil function or lupus pathogenesis. Here, we found that neutrophils activated by lupus-derived immune complexes demonstrated markedly increased IRE1α ribonuclease activity. Importantly, in neutrophils isolated from patients with lupus, we also detected heightened IRE1α activity that was correlated with global disease activity. Immune complex–stimulated neutrophils produced both mitochondrial ROS (mitoROS) and the activated form of caspase-2 in an IRE1α-dependent fashion, whereas inhibition of IRE1α mitigated immune complex–mediated NETosis (in both human neutrophils and a mouse model of lupus). Administration of an IRE1α inhibitor to lupus-prone MRL/lpr mice over 8 weeks reduced mitoROS levels in peripheral blood neutrophils, while also restraining plasma cell expansion and autoantibody formation. In summary, these data identify a role for IRE1α in the hyperactivity of lupus neutrophils and show that this pathway is upstream of mitochondrial dysfunction, mitoROS formation, and NETosis. We believe that inhibition of the IRE1α pathway is a novel strategy for neutralizing NETosis in lupus, and potentially other inflammatory conditions.

Authors

Gautam Sule, Basel H. Abuaita, Paul A. Steffes, Andrew T. Fernandes, Shanea K. Estes, Craig Dobry, Deepika Pandian, Johann E. Gudjonsson, J. Michelle Kahlenberg, Mary X. O’Riordan, Jason S. Knight

×

Figure 8

Altered B cell populations in lupus mice upon IRE1α inhibition.

Options: View larger image (or click on image) Download as PowerPoint
Altered B cell populations in lupus mice upon IRE1α inhibition.
MRL/lpr ...
MRL/lpr mice were treated with the IRE1α inhibitor KIRA6 as described in Methods (n = 4–5 control C57BL/6 mice and n = 8–9 MRL/lpr mice per treatment group). Splenocytes and lymph node cells were collected after 8 weeks of treatment. (A) MHCII+B220+CD45+ B cells, (B) PNA+GL7+MHCII+B220+CD45+ GC B cells, (C) CD138+CD38loMHCII+B220+CD45+ plasmablasts, (D) CD138+B220loCD45+ plasma cells, (E) CD38+MHCII+B220+ activated B cells, (F) follicular B cells, (G) marginal zone B cells, and (H) transitional B cells were characterized by flow cytometry. **P < 0.01, ***P < 0.001, ****P < 0.0001, #P < 0.05, ##P < 0.01, ###P < 0.001, and ####P < 0.0001, by 1-way ANOVA followed by Holm-Sidak’s multiple-comparison test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts