Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
RGS2-mediated translational control mediates cancer cell dormancy and tumor relapse
Jaebeom Cho, Hye-Young Min, Ho Jin Lee, Seung Yeob Hyun, Jeong Yeon Sim, Myungkyung Noh, Su Jung Hwang, Shin-Hyung Park, Hye-Jin Boo, Hyo-Jong Lee, Sungyoul Hong, Rang-Woon Park, Young Kee Shin, Mien-Chie Hung, Ho-Young Lee
Jaebeom Cho, Hye-Young Min, Ho Jin Lee, Seung Yeob Hyun, Jeong Yeon Sim, Myungkyung Noh, Su Jung Hwang, Shin-Hyung Park, Hye-Jin Boo, Hyo-Jong Lee, Sungyoul Hong, Rang-Woon Park, Young Kee Shin, Mien-Chie Hung, Ho-Young Lee
View: Text | PDF | Corrigendum
Research Article Cell biology Oncology

RGS2-mediated translational control mediates cancer cell dormancy and tumor relapse

  • Text
  • PDF
Abstract

Slow-cycling/dormant cancer cells (SCCs) have pivotal roles in driving cancer relapse and drug resistance. A mechanistic explanation for cancer cell dormancy and therapeutic strategies targeting SCCs are necessary to improve patient prognosis, but are limited because of technical challenges to obtaining SCCs. Here, by applying proliferation-sensitive dyes and chemotherapeutics to non–small cell lung cancer (NSCLC) cell lines and patient-derived xenografts, we identified a distinct SCC subpopulation that resembled SCCs in patient tumors. These SCCs displayed major dormancy-like phenotypes and high survival capacity under hostile microenvironments through transcriptional upregulation of regulator of G protein signaling 2 (RGS2). Database analysis revealed RGS2 as a biomarker of retarded proliferation and poor prognosis in NSCLC. We showed that RGS2 caused prolonged translational arrest in SCCs through persistent eukaryotic initiation factor 2 (eIF2α) phosphorylation via proteasome-mediated degradation of activating transcription factor 4 (ATF4). Translational activation through RGS2 antagonism or the use of phosphodiesterase 5 inhibitors, including sildenafil (Viagra), promoted ER stress–induced apoptosis in SCCs in vitro and in vivo under stressed conditions, such as those induced by chemotherapy. Our results suggest that a low-dose chemotherapy and translation-instigating pharmacological intervention in combination is an effective strategy to prevent tumor progression in NSCLC patients after rigorous chemotherapy.

Authors

Jaebeom Cho, Hye-Young Min, Ho Jin Lee, Seung Yeob Hyun, Jeong Yeon Sim, Myungkyung Noh, Su Jung Hwang, Shin-Hyung Park, Hye-Jin Boo, Hyo-Jong Lee, Sungyoul Hong, Rang-Woon Park, Young Kee Shin, Mien-Chie Hung, Ho-Young Lee

×

Figure 3

Quiescence-like phenotypes of SCC sublines.

Options: View larger image (or click on image) Download as PowerPoint
Quiescence-like phenotypes of SCC sublines.
(A) Schematic diagram showin...
(A) Schematic diagram showing enrichment of SCCs (H460/PcR, H1299/CsR, H1299/PmR, and SK/PcR) by long-term treatment with chemotherapeutic drugs to ACCs (H460, H1299 and SK). (B and C) Downregulation of cell proliferation (B) and anchorage-dependent colony formation (C) of SCCs compared with the corresponding ACCs. (D) Upregulation of RGS2 mRNA and protein expression in SCCs compared with the ACCs. (E) Immunoblotting showing modulation of cell proliferation, quiescence, and cell cycle arrest–associated markers in SCCs compared with the ACCs. (F and G) Downregulation of energy metabolism (F), CAP-dependent and -independent protein translation (G) in SCCs compared with ACCs. (H) Delayed growth of xenograft tumors generated from SCCs compared with those generated from ACCs in NOD/SCID mice (H460, n = 6, H460/PcR, n = 6; H1299, n = 6, H1299/CsR n = 5; H1299, n = 10, H1299/PmR, n = 10; SK, n = 5, SK/PcR, n = 5). The data are presented as the mean ± SD. n = 3 for B, C, D, F; n = 4 or 8 for G. *P < 0.05, **P < 0.01, and ***P < 0.001, as determined by a 2-tailed Student’s t test.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts