Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Upcoming)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Mitochondrial dysfunction in inflammatory bowel disease alters intestinal epithelial metabolism of hepatic acylcarnitines
Sarah A. Smith, … , Hiroshi Nakagawa, Gary D. Wu
Sarah A. Smith, … , Hiroshi Nakagawa, Gary D. Wu
Published November 3, 2020
Citation Information: J Clin Invest. 2021;131(1):e133371. https://doi.org/10.1172/JCI133371.
View: Text | PDF
Research Article Gastroenterology Inflammation

Mitochondrial dysfunction in inflammatory bowel disease alters intestinal epithelial metabolism of hepatic acylcarnitines

  • Text
  • PDF
Abstract

As the interface between the gut microbiota and the mucosal immune system, there has been great interest in the maintenance of colonic epithelial integrity through mitochondrial oxidation of butyrate, a short-chain fatty acid produced by the gut microbiota. Herein, we showed that the intestinal epithelium could also oxidize long-chain fatty acids, and that luminally delivered acylcarnitines in bile could be consumed via apical absorption by the intestinal epithelium, resulting in mitochondrial oxidation. Finally, intestinal inflammation led to mitochondrial dysfunction in the apical domain of the surface epithelium that may reduce the consumption of fatty acids, contributing to higher concentrations of fecal acylcarnitines in murine Citrobacter rodentium–induced colitis and human inflammatory bowel disease. These results emphasized the importance of both the gut microbiota and the liver in the delivery of energy substrates for mitochondrial metabolism by the intestinal epithelium.

Authors

Sarah A. Smith, Sayaka A. Ogawa, Lillian Chau, Kelly A. Whelan, Kathryn E. Hamilton, Jie Chen, Lu Tan, Eric Z. Chen, Sue Keilbaugh, Franz Fogt, Meenakshi Bewtra, Jonathan Braun, Ramnik J. Xavier, Clary B. Clish, Barry Slaff, Aalim M. Weljie, Frederic D. Bushman, James D. Lewis, Hongzhe Li, Stephen R. Master, Michael J. Bennett, Hiroshi Nakagawa, Gary D. Wu

×

Full Text PDF | Download (13.00 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts