Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Immune exclusion by naturally acquired secretory IgA against pneumococcal pilus-1
Ulrike Binsker, … , Alexandria J. Hammond, Jeffrey N. Weiser
Ulrike Binsker, … , Alexandria J. Hammond, Jeffrey N. Weiser
Published November 5, 2019
Citation Information: J Clin Invest. 2020;130(2):927-941. https://doi.org/10.1172/JCI132005.
View: Text | PDF
Research Article Microbiology

Immune exclusion by naturally acquired secretory IgA against pneumococcal pilus-1

  • Text
  • PDF
Abstract

Successful infection by mucosal pathogens requires overcoming the mucus barrier. To better understand this key step, we performed a survey of the interactions between human respiratory mucus and the human pathogen Streptococcus pneumoniae. Pneumococcal adherence to adult human nasal fluid was seen only by isolates expressing pilus-1. Robust binding was independent of pilus-1 adhesive properties but required Fab-dependent recognition of RrgB, the pilus shaft protein, by naturally acquired secretory IgA (sIgA). Pilus-1 binding by specific sIgA led to bacterial agglutination, but adherence required interaction of agglutinated pneumococci and entrapment in mucus particles. To test the effect of these interactions in vivo, pneumococci were preincubated with human sIgA before intranasal challenge in a mouse model of colonization. sIgA treatment resulted in rapid immune exclusion of pilus-expressing pneumococci. Our findings predict that immune exclusion would select for nonpiliated isolates in individuals who acquired RrgB-specific sIgA from prior episodes of colonization with piliated strains. Accordingly, genomic data comparing isolates carried by mothers and their children showed that mothers are less likely to be colonized with pilus-expressing strains. Our study provides a specific example of immune exclusion involving naturally acquired antibody in the human host, a major factor driving pneumococcal adaptation.

Authors

Ulrike Binsker, John A. Lees, Alexandria J. Hammond, Jeffrey N. Weiser

×

Full Text PDF | Download (4.49 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts