Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Supraphysiological androgens suppress prostate cancer growth through androgen receptor–mediated DNA damage
Payel Chatterjee, … , Samuel R. Denmeade, Peter S. Nelson
Payel Chatterjee, … , Samuel R. Denmeade, Peter S. Nelson
Published July 16, 2019
Citation Information: J Clin Invest. 2019;129(10):4245-4260. https://doi.org/10.1172/JCI127613.
View: Text | PDF
Research Article Endocrinology Oncology

Supraphysiological androgens suppress prostate cancer growth through androgen receptor–mediated DNA damage

  • Text
  • PDF
Abstract

Prostate cancer (PC) initially depends on androgen receptor (AR) signaling for survival and growth. Therapeutics designed to suppress AR activity serve as the primary intervention for advanced disease. However, supraphysiological androgen (SPA) concentrations can produce paradoxical responses leading to PC growth inhibition. We sought to discern the mechanisms by which SPA inhibits PC and to determine if molecular context associates with antitumor activity. SPA produced an AR-mediated, dose-dependent induction of DNA double-strand breaks, G0/G1 cell-cycle arrest, and cellular senescence. SPA repressed genes involved in DNA repair and delayed the restoration of damaged DNA, which was augmented by poly (ADP-ribose) polymerase 1 inhibition. SPA-induced double-strand breaks were accentuated in BRCA2-deficient patients with PC, and combining SPA with poly (ADP-ribose) polymerase or DNA-dependent protein kinase inhibition further repressed growth. Next-generation sequencing was performed on biospecimens from patients with PC receiving SPA as part of ongoing phase II clinical trials. Patients with mutations in genes mediating homology-directed DNA repair were more likely to exhibit clinical responses to SPA. These results provide a mechanistic rationale for directing SPA therapy to patients with PC who have AR amplification or DNA repair deficiency and for combining SPA therapy with poly (ADP-ribose) polymerase inhibition.

Authors

Payel Chatterjee, Michael T. Schweizer, Jared M. Lucas, Ilsa Coleman, Michael D. Nyquist, Sander B. Frank, Robin Tharakan, Elahe Mostaghel, Jun Luo, Colin C. Pritchard, Hung-Ming Lam, Eva Corey, Emmanuel S. Antonarakis, Samuel R. Denmeade, Peter S. Nelson

×

Figure 6

Clinical response to supraphysiological T treatment is associated with mutations in homologous recombination DNA repair genes.

Options: View larger image (or click on image) Download as PowerPoint
Clinical response to supraphysiological T treatment is associated with m...
PSA waterfall plot for patients receiving BAT as part of 2 ongoing phase II trials. Data are presented for patients with and without pathogenic germline or somatic mutations in HR DNA repair pathway genes (i.e., HRD). PSA declines of greater than or equal to 50% (PSA50 response) were more frequent in patients with HRD compared with those without HRD (PSA50 response: 15/29 [52%] vs. 6/33 [18%]; χ2 P = 0.005). *Percent change in PSA truncated at 100%.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts