Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
IL-17–producing γδ T cells protect against Clostridium difficile infection
Yee-Shiuan Chen, Iuan-Bor Chen, Giang Pham, Tzu-Yu Shao, Hansraj Bangar, Sing Sing Way, David B. Haslam
Yee-Shiuan Chen, Iuan-Bor Chen, Giang Pham, Tzu-Yu Shao, Hansraj Bangar, Sing Sing Way, David B. Haslam
View: Text | PDF
Research Article Immunology Infectious disease

IL-17–producing γδ T cells protect against Clostridium difficile infection

  • Text
  • PDF
Abstract

Colitis caused by Clostridium difficile infection is a growing cause of human morbidity and mortality, especially after antibiotic use in health care settings. The natural immunity of newborn infants and protective host immune mediators against C. difficile infection are not fully understood, with data suggesting that inflammation can be either protective or pathogenic. Here, we show an essential role for IL-17A produced by γδ T cells in host defense against C. difficile infection. Fecal extracts from children with C. difficile infection showed increased IL-17A and T cell receptor γ chain expression, and IL-17 production by intestinal γδ T cells was efficiently induced after infection in mice. C. difficile–induced tissue inflammation and mortality were markedly increased in mice deficient in IL-17A or γδ T cells. Neonatal mice, with naturally expanded RORγt+ γδ T cells poised for IL-17 production were resistant to C. difficile infection, whereas elimination of γδ T cells or IL-17A each efficiently overturned neonatal resistance against infection. These results reveal an expanded role for IL-17–producing γδ T cells in neonatal host defense against infection and provide a mechanistic explanation for the clinically observed resistance of infants to C. difficile colitis.

Authors

Yee-Shiuan Chen, Iuan-Bor Chen, Giang Pham, Tzu-Yu Shao, Hansraj Bangar, Sing Sing Way, David B. Haslam

×

Figure 3

γδ T cells respond rapidly to C. difficile.

Options: View larger image (or click on image) Download as PowerPoint
γδ T cells respond rapidly to C. difficile.

(A) αβ T cell and γδ T cell...
(A) αβ T cell and γδ T cell infiltration into the cecum and colon following C. difficile was analyzed by flow cytometry. Gating was done on live CD45+CD3ε+CD8α+/– TCRβ+ cells or live CD45+CD3ε+ TCRγδ+ cells. n = 4 per time point. (B) Surface expression of CD69 in αβ T cells and γδ T cells on day 4 after infection (4 × 105 CFU). Gray-colored histograms represent isotype control staining. Gating was done on live CD45+CD3ε+CD4+ TCRβ+ cells or live CD45+CD3ε+ TCRγδ+ cells (results are representative of 2 experiments). (C) Ki67 expression in αβ T cells and γδ T cells from mLNs from naive and day-4–infected mice (4 × 105 CFU). Results are representative of 2 experiments. Gating was done as in B.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts