Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Loss of the sphingolipid desaturase DEGS1 causes hypomyelinating leukodystrophy
Devesh C. Pant, … , Odile Boespflug-Tanguy, Aurora Pujol
Devesh C. Pant, … , Odile Boespflug-Tanguy, Aurora Pujol
Published January 8, 2019
Citation Information: J Clin Invest. 2019;129(3):1240-1256. https://doi.org/10.1172/JCI123959.
View: Text | PDF
Research Article Neuroscience

Loss of the sphingolipid desaturase DEGS1 causes hypomyelinating leukodystrophy

  • Text
  • PDF
Abstract

Sphingolipid imbalance is the culprit in a variety of neurological diseases, some affecting the myelin sheath. We have used whole-exome sequencing in patients with undetermined leukoencephalopathies to uncover the endoplasmic reticulum lipid desaturase DEGS1 as the causative gene in 19 patients from 13 unrelated families. Shared features among the cases include severe motor arrest, early nystagmus, dystonia, spasticity, and profound failure to thrive. MRI showed hypomyelination, thinning of the corpus callosum, and progressive thalamic and cerebellar atrophy, suggesting a critical role of DEGS1 in myelin development and maintenance. This enzyme converts dihydroceramide (DhCer) into ceramide (Cer) in the final step of the de novo biosynthesis pathway. We detected a marked increase of the substrate DhCer and DhCer/Cer ratios in patients’ fibroblasts and muscle. Further, we used a knockdown approach for disease modeling in Danio rerio, followed by a preclinical test with the first-line treatment for multiple sclerosis, fingolimod (FTY720, Gilenya). The enzymatic inhibition of Cer synthase by fingolimod, 1 step prior to DEGS1 in the pathway, reduced the critical DhCer/Cer imbalance and the severe locomotor disability, increasing the number of myelinating oligodendrocytes in a zebrafish model. These proof-of-concept results pave the way to clinical translation.

Authors

Devesh C. Pant, Imen Dorboz, Agatha Schluter, Stéphane Fourcade, Nathalie Launay, Javier Joya, Sergio Aguilera-Albesa, Maria Eugenia Yoldi, Carlos Casasnovas, Mary J. Willis, Montserrat Ruiz, Dorothée Ville, Gaetan Lesca, Karine Siquier-Pernet, Isabelle Desguerre, Huifang Yan, Jingmin Wang, Margit Burmeister, Lauren Brady, Mark Tarnopolsky, Carles Cornet, Davide Rubbini, Javier Terriente, Kiely N. James, Damir Musaev, Maha S. Zaki, Marc C. Patterson, Brendan C. Lanpher, Eric W. Klee, Filippo Pinto e Vairo, Elizabeth Wohler, Nara Lygia de M. Sobreira, Julie S. Cohen, Reza Maroofian, Hamid Galehdari, Neda Mazaheri, Gholamreza Shariati, Laurence Colleaux, Diana Rodriguez, Joseph G. Gleeson, Cristina Pujades, Ali Fatemi, Odile Boespflug-Tanguy, Aurora Pujol

×

Full Text PDF | Download (6.77 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts