Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Complement and inflammasome overactivation mediates paroxysmal nocturnal hemoglobinuria with autoinflammation
Britta Höchsmann, … , Peter M. Krawitz, Taroh Kinoshita
Britta Höchsmann, … , Peter M. Krawitz, Taroh Kinoshita
Published August 20, 2019
Citation Information: J Clin Invest. 2019;129(12):5123-5136. https://doi.org/10.1172/JCI123501.
View: Text | PDF
Research Article Hematology Inflammation

Complement and inflammasome overactivation mediates paroxysmal nocturnal hemoglobinuria with autoinflammation

  • Text
  • PDF
Abstract

Patients with paroxysmal nocturnal hemoglobinuria (PNH) have a clonal population of blood cells deficient in glycosylphosphatidylinositol-anchored (GPI-anchored) proteins, resulting from a mutation in the X-linked gene PIGA. Here we report on a set of patients in whom PNH results instead from biallelic mutation of PIGT on chromosome 20. These PIGT-PNH patients have clinically typical PNH, but they have in addition prominent autoinflammatory features, including recurrent attacks of aseptic meningitis. In all these patients we find a germ-line point mutation in one PIGT allele, whereas the other PIGT allele is removed by somatic deletion of a 20q region comprising maternally imprinted genes implicated in myeloproliferative syndromes. Unlike in PIGA-PNH cells, GPI is synthesized in PIGT-PNH cells and, since its attachment to proteins is blocked, free GPI is expressed on the cell surface. From studies of patients’ leukocytes and of PIGT-KO THP-1 cells we show that, through increased IL-1β secretion, activation of the lectin pathway of complement and generation of C5b-9 complexes, free GPI is the agent of autoinflammation. Eculizumab treatment abrogates not only intravascular hemolysis, but also autoinflammation. Thus, PIGT-PNH differs from PIGA-PNH both in the mechanism of clonal expansion and in clinical manifestations.

Authors

Britta Höchsmann, Yoshiko Murakami, Makiko Osato, Alexej Knaus, Michi Kawamoto, Norimitsu Inoue, Tetsuya Hirata, Shogo Murata, Markus Anliker, Thomas Eggermann, Marten Jäger, Ricarda Floettmann, Alexander Höllein, Sho Murase, Yasutaka Ueda, Jun-ichi Nishimura, Yuzuru Kanakura, Nobuo Kohara, Hubert Schrezenmeier, Peter M. Krawitz, Taroh Kinoshita

×
Options: View larger image (or click on image) Download as PowerPoint
J1: cytokines and other proteins in serum samples

J1: cytokines and other proteins in serum samples

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts