Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Thioredoxin-1 confines T cell alloresponse and pathogenicity in graft-versus-host disease
M. Hanief Sofi, … , Shikhar Mehrotra, Xue-Zhong Yu
M. Hanief Sofi, … , Shikhar Mehrotra, Xue-Zhong Yu
Published May 2, 2019
Citation Information: J Clin Invest. 2019;129(7):2760-2774. https://doi.org/10.1172/JCI122899.
View: Text | PDF
Research Article Immunology Transplantation

Thioredoxin-1 confines T cell alloresponse and pathogenicity in graft-versus-host disease

  • Text
  • PDF
Abstract

Oxidative stress is elevated in the recipients of allogeneic hematopoietic cell transplantation (allo-HCT) and likely contributes to the development of graft-versus-host disease (GVHD). GVHD is characterized by activation, expansion, cytokine production, and migration of alloreactive donor T cells, and remains a major cause of morbidity and mortality after allo-HCT. Hence, strategies to limit oxidative stress in GVHD are highly desirable. Thioredoxin-1 (Trx1) counteracts oxidative stress by scavenging ROS and regulating other enzymes that metabolize H2O2. The present study sought to elucidate the role of Trx1 in the pathophysiology of GVHD. Using murine and xenograft models of allogeneic bone marrow transplantation (allo-BMT) and genetic (human Trx1-Tg) as well as pharmacological (human recombinant Trx1 [RTrx1]) strategies, we found that Trx1-Tg donor T cells or administration of RTrx1 to the recipients significantly reduced GVHD severity. Mechanistically, we observed that RTrx1 reduced ROS accumulation and cytokine production of mouse and human T cells in response to alloantigen stimulation in vitro. In allo-BMT settings, we found that Trx1-Tg or RTrx1 decreased downstream signaling molecules, including NF-κB activation and T-bet expression, and reduced proliferation, IFN-γ production, and ROS accumulation in donor T cells within GVHD target organs. More importantly, administration of RTrx1 did not impair the graft-versus-leukemia effect. Taken together, the current work provides a strong rationale for, and demonstrates the feasibility of, targeting the ROS pathway, which can be readily translated to the clinic.

Authors

M. Hanief Sofi, Yongxia Wu, Steven D. Schutt, Min Dai, Anusara Daenthanasanmak, Jessica Heinrichs Voss, Hung Nguyen, David Bastian, Supinya Iamsawat, Shanmugam Panneer Selvam, Chen Liu, Nilanjana Maulik, Besim Ogretmen, Junfei Jin, Shikhar Mehrotra, Xue-Zhong Yu

×

Full Text PDF | Download (7.42 MB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts