Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Transplacental immune modulation with a bacterial-derived agent protects against allergic airway inflammation
Kyle T. Mincham, Naomi M. Scott, Jean-Francois Lauzon-Joset, Jonatan Leffler, Alexander N. Larcombe, Philip A. Stumbles, Sarah A. Robertson, Christian Pasquali, Patrick G. Holt, Deborah H. Strickland
Kyle T. Mincham, Naomi M. Scott, Jean-Francois Lauzon-Joset, Jonatan Leffler, Alexander N. Larcombe, Philip A. Stumbles, Sarah A. Robertson, Christian Pasquali, Patrick G. Holt, Deborah H. Strickland
View: Text | PDF
Research Article Cell biology Immunology

Transplacental immune modulation with a bacterial-derived agent protects against allergic airway inflammation

  • Text
  • PDF
Abstract

Chronic allergic inflammatory diseases are a major cause of morbidity, with allergic asthma alone affecting over 300 million people worldwide. Epidemiological studies demonstrate that environmental stimuli are associated with either the promotion or prevention of disease. Major reductions in asthma prevalence are documented in European and US farming communities. Protection is associated with exposure of mothers during pregnancy to microbial breakdown products present in farm dusts and unprocessed foods and enhancement of innate immune competence in the children. We sought to develop a scientific rationale for progressing these findings toward clinical application for primary disease prevention. Treatment of pregnant mice with a defined, clinically approved immune modulator was shown to markedly reduce susceptibility of their offspring to development of the hallmark clinical features of allergic airway inflammatory disease. Mechanistically, offspring displayed enhanced dendritic cell–dependent airway mucosal immune surveillance function, which resulted in more efficient generation of mucosal-homing regulatory T cells in response to local inflammatory challenge. We provide evidence that the principal target for maternal treatment effects was the fetal dendritic cell progenitor compartment, equipping the offspring for accelerated functional maturation of the airway mucosal dendritic cell network following birth. These data provide proof of concept supporting the rationale for developing transplacental immune reprogramming approaches for primary disease prevention.

Authors

Kyle T. Mincham, Naomi M. Scott, Jean-Francois Lauzon-Joset, Jonatan Leffler, Alexander N. Larcombe, Philip A. Stumbles, Sarah A. Robertson, Christian Pasquali, Patrick G. Holt, Deborah H. Strickland

×

Figure 2

Bone marrow cellular response following aeroallergen challenge in mice sensitized at weaning.

Options: View larger image (or click on image) Download as PowerPoint
Bone marrow cellular response following aeroallergen challenge in mice s...
(A) Lin–IL7-Rα–c-Kit+Sca-1– myeloid progenitors (MP), (B) Lin–IL7-Rα–c-Kit+Sca-1–CD16/32lo/–CD34lo/– common myeloid progenitors (CMP), (C) Lin–IL7-Rα–c-Kit+Sca-1–CD16/32hiCD34+ granulocyte-macrophage progenitors (GMP), (D) Lin–IL7-Rα–c-Kit+Sca-1–CD16/32hiCD34+ CX3CR1+Flt-3+ macrophage–dendritic cell progenitors (MDP), (E) CD11c+CD11b+IAIE– pre-cDCs, and (F) CD11c+CD11b+IAIE+ cDCs in bone marrow as a proportion of total cells. (G) MFI of IAIE on bone marrow cDCs. Data are presented from individual animals comparing naive controls (white) versus OVA-sensitized and aerosol-challenged offspring (with sample collection 24 hours after challenge; red). Data are displayed as box-and-whisker plots showing median, Q1, and Q3 and minimum to maximum values of n ≥ 8 independent experiments. Statistical significance was determined using Student’s t test or Mann-Whitney U test and is presented as **P < 0.01, ***P < 0.001, ****P < 0.0001.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts