Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain
Shouan Zhu, … , Xinzhong Dong, Xu Cao
Shouan Zhu, … , Xinzhong Dong, Xu Cao
Published December 11, 2018
Citation Information: J Clin Invest. 2019;129(3):1076-1093. https://doi.org/10.1172/JCI121561.
View: Text | PDF
Research Article Bone Biology Neuroscience

Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain

  • Text
  • PDF
Abstract

Joint pain is the defining symptom of osteoarthritis (OA) but its origin and mechanisms remain unclear. Here, we investigated an unprecedented role of osteoclast-initiated subchondral bone remodeling in sensory innervation for OA pain. We show that osteoclasts secrete netrin-1 to induce sensory nerve axonal growth in subchondral bone. Reduction of osteoclast formation by knockout of receptor activator of nuclear factor kappa-B ligand (Rankl) in osteocytes inhibited the growth of sensory nerves into subchondral bone, dorsal root ganglion neuron hyperexcitability, and behavioral measures of pain hypersensitivity in OA mice. Moreover, we demonstrated a possible role for netrin-1 secreted by osteoclasts during aberrant subchondral bone remodeling in inducing sensory innervation and OA pain through its receptor DCC (deleted in colorectal cancer). Importantly, knockout of Netrin1 in tartrate-resistant acid phosphatase–positive (TRAP-positive) osteoclasts or knockdown of Dcc reduces OA pain behavior. In particular, inhibition of osteoclast activity by alendronate modifies aberrant subchondral bone remodeling and reduces innervation and pain behavior at the early stage of OA. These results suggest that intervention of the axonal guidance molecules (e.g., netrin-1) derived from aberrant subchondral bone remodeling may have therapeutic potential for OA pain.

Authors

Shouan Zhu, Jianxi Zhu, Gehua Zhen, Yihe Hu, Senbo An, Yusheng Li, Qin Zheng, Zhiyong Chen, Ya Yang, Mei Wan, Richard Leroy Skolasky, Yong Cao, Tianding Wu, Bo Gao, Mi Yang, Manman Gao, Julia Kuliwaba, Shuangfei Ni, Lei Wang, Chuanlong Wu, David Findlay, Holger K. Eltzschig, Hong Wei Ouyang, Janet Crane, Feng-Quan Zhou, Yun Guan, Xinzhong Dong, Xu Cao

×

Full Text PDF | Download (28.56 MB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts