Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Issue published March 1, 2019 Previous issue | Next issue

  • Volume 129, Issue 3
Go to section:
  • Viewpoints
  • Reviews
  • Commentaries
  • Research Articles

On the cover: Cingulum stimulation enhances mood during awake neurosurgery

In this issue of the JCI, Bijanki et al. report on the mood-enhancing effects of cingulum stimulation during awake neurosurgery. Three patients undergoing diagnostic intracranial seizure monitoring exhibited decreased anxiety and elevated mood following low-intensity stimulation of the anterior cingulum bundle, a brain area involved in emotional and cognitive function. In one patient, this stimulation was used clinically to control intraoperative anxiety during awake craniotomy. This issue’s cover depicts the implanted electrode’s position along the cingulum bundle, which is highlighted in pink. In the background, a man’s changing facial expressions represent one objective measurement of the stimulation’s effects. Image credit: Bona Kim, MA, CMI, Emory University Brain Health Center.

Viewpoints
The JCI Scholar experience: perspectives from young physician-scientists
Austin K. Mattox, Justin Lowenthal
Austin K. Mattox, Justin Lowenthal
Published February 4, 2019
Citation Information: J Clin Invest. 2019;129(3):941-943. https://doi.org/10.1172/JCI126456.
View: Text | PDF

The JCI Scholar experience: perspectives from young physician-scientists

  • Text
  • PDF
Abstract

Authors

Austin K. Mattox, Justin Lowenthal

×

Precision medicine: discovering clinically relevant and mechanistically anchored disease subgroups at scale
Antony Rosen, Scott L. Zeger
Antony Rosen, Scott L. Zeger
Published January 28, 2019
Citation Information: J Clin Invest. 2019;129(3):944-945. https://doi.org/10.1172/JCI126120.
View: Text | PDF

Precision medicine: discovering clinically relevant and mechanistically anchored disease subgroups at scale

  • Text
  • PDF
Abstract

Authors

Antony Rosen, Scott L. Zeger

×

Promises, promises, and precision medicine
Michael J. Joyner, Nigel Paneth
Michael J. Joyner, Nigel Paneth
Published January 28, 2019
Citation Information: J Clin Invest. 2019;129(3):946-948. https://doi.org/10.1172/JCI126119.
View: Text | PDF

Promises, promises, and precision medicine

  • Text
  • PDF
Abstract

Authors

Michael J. Joyner, Nigel Paneth

×
Reviews
Selective tissue targeting of synthetic nucleic acid drugs
Punit P. Seth, … , Michael Tanowitz, C. Frank Bennett
Punit P. Seth, … , Michael Tanowitz, C. Frank Bennett
Published January 28, 2019
Citation Information: J Clin Invest. 2019;129(3):915-925. https://doi.org/10.1172/JCI125228.
View: Text | PDF

Selective tissue targeting of synthetic nucleic acid drugs

  • Text
  • PDF
Abstract

Antisense oligonucleotides (ASOs) are chemically synthesized nucleic acid analogs designed to bind to RNA by Watson-Crick base pairing. Following binding to the targeted RNA, the ASO perturbs RNA function by promoting selective degradation of the targeted RNA, altering RNA intermediary metabolism, or disrupting function of the RNA. Most antisense drugs are chemically modified to enhance their pharmacological properties and for passive targeting of the tissues of therapeutic interest. Recent advances in selective tissue targeting have resulted in a newer generation of ASO drugs that are more potent and better tolerated than previous generations, spawning renewed interest in identifying selective ligands that enhance targeted delivery of ASOs to tissues.

Authors

Punit P. Seth, Michael Tanowitz, C. Frank Bennett

×

Autoimmune seizures and epilepsy
Christian Geis, … , Francesc Graus, Josep Dalmau
Christian Geis, … , Francesc Graus, Josep Dalmau
Published February 4, 2019
Citation Information: J Clin Invest. 2019;129(3):926-940. https://doi.org/10.1172/JCI125178.
View: Text | PDF

Autoimmune seizures and epilepsy

  • Text
  • PDF
Abstract

The rapid expansion in the number of encephalitis disorders associated with autoantibodies against neuronal proteins has led to an incremental increase in use of the term “autoimmune epilepsy,” yet has occurred with limited attention to the physiopathology of each disease and genuine propensity to develop epilepsy. Indeed, most autoimmune encephalitides present with seizures, but the probability of evolving to epilepsy is relatively small. The risk of epilepsy is higher for disorders in which the antigens are intracellular (often T cell–mediated) compared with disorders in which the antigens are on the cell surface (antibody-mediated). Most autoantibodies against neuronal surface antigens show robust effects on the target proteins, resulting in hyperexcitability and impairment of synaptic function and plasticity. Here, we trace the evolution of the concept of autoimmune epilepsy and examine common inflammatory pathways that might lead to epilepsy. Then, we focus on several antibody-mediated encephalitis disorders that associate with seizures and review the synaptic alterations caused by patients’ antibodies, with emphasis on those that have been modeled in animals (e.g., antibodies against NMDA, AMPA receptors, LGI1 protein) or in cultured neurons (e.g., antibodies against the GABAb receptor).

Authors

Christian Geis, Jesus Planagumà, Mar Carreño, Francesc Graus, Josep Dalmau

×
Commentaries
Cancer neoantigens targeted by adoptive T cell transfer: private no more
Enrico Lugli, … , Pia Kvistborg, Giovanni Galletti
Enrico Lugli, … , Pia Kvistborg, Giovanni Galletti
Published February 4, 2019
Citation Information: J Clin Invest. 2019;129(3):949-951. https://doi.org/10.1172/JCI126295.
View: Text | PDF

Cancer neoantigens targeted by adoptive T cell transfer: private no more

  • Text
  • PDF
Abstract

Effector T cell responses directed toward cancer neoantigens mediate tumor regression following checkpoint blockade or adoptive T cell immunotherapy, but are generally “private”, thus requiring considerable effort for their identification. In this issue of the JCI, Malekzadeh et al. show that a fraction of patients with epithelial cancers mount antigen-specific T cell responses to “hot spot” p53 mutations that in some cases are shared among patients. This work suggests that other genes frequently mutated in human cancer can be immunogenic, thus offering a rapid way to screen for cancer neoantigens that can be targeted by subsequent T cell–based therapies.

Authors

Enrico Lugli, Pia Kvistborg, Giovanni Galletti

×

Probing the happy place
Kelly A. Mills
Kelly A. Mills
Published February 11, 2019
Citation Information: J Clin Invest. 2019;129(3):952-954. https://doi.org/10.1172/JCI126683.
View: Text | PDF

Probing the happy place

  • Text
  • PDF
Abstract

A variety of neurological procedures, including deep brain stimulation and craniotomies that require tissue removal near elegant cortices, require patients to remain awake and responsive in order to monitor function. Such procedures can produce anxiety and are poorly tolerated in some subjects. In this issue of the JCI, Bijanki and colleagues demonstrate that electrical stimulation of the left dorsal anterior cingulum bundle promoted a positive (mirthful) effect and reduced anxiety, without sedation, in three patients with epilepsy undergoing intracranial electrode monitoring. The results of this study highlight the need for further evaluation of anterior cingulum stimulation to reduce anxiety during awake surgery and as a possible approach for treating anxiety disorders.

Authors

Kelly A. Mills

×

Recruiting CD33 on mast cells to inhibit IgE-mediated mast cell–dependent anaphylaxis
Stephen J. Galli
Stephen J. Galli
Published February 18, 2019
Citation Information: J Clin Invest. 2019;129(3):955-957. https://doi.org/10.1172/JCI127100.
View: Text | PDF

Recruiting CD33 on mast cells to inhibit IgE-mediated mast cell–dependent anaphylaxis

  • Text
  • PDF
Abstract

IgE-mediated activation of mast cells is a hallmark of an anaphylactic reaction to allergen. In this issue of the JCI, Duan et al. describe an approach for suppressing IgE-dependent mast cell activation, thereby suppressing anaphylaxis. Specifically, the authors show that delivery of liposomes containing both the specific antigen recognized by the mast cell–bound IgE and a high-affinity glycan ligand of the inhibitory receptor CD33 (CD33L) to targeted mast cells inhibits antigen-induced, FcεRI-dependent spleen tyrosine kinase (Syk) phosphorylation and downstream protein tyrosine kinase (PTK) phosphorylation, Ca++ flux, and β-hexosaminidase release (i.e., degranulation). However, this strategy only worked if both the antigen (reactive with the mast cell–bound IgE) and CD33L were on the same liposome. This approach promises to rapidly reduce IgE-dependent mast cell activation in response to challenge with offending allergens.

Authors

Stephen J. Galli

×

A promising approach to targeting type 1 IFN in systemic lupus erythematosus
Yashaar Chaichian, … , Daniel J. Wallace, Michael H. Weisman
Yashaar Chaichian, … , Daniel J. Wallace, Michael H. Weisman
Published February 18, 2019
Citation Information: J Clin Invest. 2019;129(3):958-961. https://doi.org/10.1172/JCI127101.
View: Text | PDF

A promising approach to targeting type 1 IFN in systemic lupus erythematosus

  • Text
  • PDF
Abstract

Despite advances in understanding systemic lupus erythematosus (SLE) pathogenesis, most clinical trials of new targeted therapies have been met with disappointment. The type I IFN pathway is believed to play an important role in SLE, and the proposed involvement of this pathway helps explain the frustration behind the failure at targeting either IFN-α or the type 1 IFN receptor itself. In this issue of the JCI, Furie et al. report on an intriguing phase 1b study that demonstrates an approach for inhibiting this pathway in the skin using an mAB (BIIB059) that targets the blood DC antigen 2 (BDCA-2) receptor on plasmacytoid DCs (pDCs). BIIB059 decreased IFN expression and improved cutaneous lupus disease activity, with a favorable safety profile. Whether or not this strategy will be effective in managing SLE in other organs remains unanswered. However, these results suggest that closing the door on targeting the type 1 IFN pathway in SLE may be premature and highlight the emerging question of whether an organ-specific approach toward lupus trials and treatment should be the wave of the future.

Authors

Yashaar Chaichian, Daniel J. Wallace, Michael H. Weisman

×

Platelet microRNAs and vascular injury
Elena V. Dolmatova, Kathy K. Griendling
Elena V. Dolmatova, Kathy K. Griendling
Published February 18, 2019
Citation Information: J Clin Invest. 2019;129(3):962-964. https://doi.org/10.1172/JCI127580.
View: Text | PDF

Platelet microRNAs and vascular injury

  • Text
  • PDF
Abstract

Vascular smooth muscle cell (VSMC) phenotype switching from a contractile state to a synthetic phenotype has been implicated in intimal remodeling during vascular injury. While multiple studies have focused on dedifferentiation of VSMCs, prevention of VSMC-mediated excessive repair remains poorly understood. In this issue of the JCI, Zeng et al. identified a mechanism by which platelet-derived microRNA-223 (miRNA-223) reverses VSMC dedifferentiation. The authors show that suppression of proliferation occurs after platelet internalization by VSMCs. Moreover, they demonstrate that miRNA-223 inhibits dedifferentiation and intimal hyperplasia in diabetic mice by decreasing PDGFRβ expression in VSMCs. Together, these results identify platelet-derived miRNA-223 as a potential therapeutic target in vascular injury.

Authors

Elena V. Dolmatova, Kathy K. Griendling

×

ARHGEF1 deficiency reveals Gα13-associated GPCRs are critical regulators of human lymphocyte function
Divij Mathew, … , Kimberly N. Kremer, Raul M. Torres
Divij Mathew, … , Kimberly N. Kremer, Raul M. Torres
Published February 4, 2019
Citation Information: J Clin Invest. 2019;129(3):965-968. https://doi.org/10.1172/JCI125893.
View: Text | PDF

ARHGEF1 deficiency reveals Gα13-associated GPCRs are critical regulators of human lymphocyte function

  • Text
  • PDF
Abstract

Primary antibody deficiencies are the most common immunodeficiencies in humans; however, identification of the underlying genetic and biochemical basis for these diseases is often difficult, given that these deficiencies typically involve complex genetic etiologies. In this issue of the JCI, Bouafia et al. performed whole-exome sequencing on a pair of siblings with primary antibody deficiencies and identified genetic mutations that result in a deficiency of ARHGEF1, a hematopoietic intracellular signaling molecule that transmits signals from GPCRs. ARHGEF1-deficient lymphocytes from the affected siblings exhibited important functional deficits that indicate that loss of ARHGEF1 accounts for the observed primary antibody deficiency, which manifests in an inability to mount antibody responses to vaccines and pathogens. Thus, this report demonstrates an important role for ARHGEF1 in GPCR signal transduction required for appropriate adaptive immune responses in humans.

Authors

Divij Mathew, Kimberly N. Kremer, Raul M. Torres

×

Dr. Jekyll and Mr. Hyde: ApoE explains opposing effects of neuronal LRP1
Michael R. Strickland, David M. Holtzman
Michael R. Strickland, David M. Holtzman
Published February 11, 2019
Citation Information: J Clin Invest. 2019;129(3):969-971. https://doi.org/10.1172/JCI127578.
View: Text | PDF

Dr. Jekyll and Mr. Hyde: ApoE explains opposing effects of neuronal LRP1

  • Text
  • PDF
Abstract

Alzheimer’s disease (AD) is the leading cause of dementia, and its pathogenesis is initiated by the accumulation of amyloid-β (Aβ) into extracellular plaques. Apolipoprotein E4 (ApoE4) is the largest genetic risk factor for sporadic AD and contributes to AD pathogenesis by influencing clearance and seeding of the initial aggregation of Aβ. In this issue of the JCI, Tachibana et al. investigated the relationship between neuronal LRP1 expression and ApoE4-mediated seeding of Aβ and showed that knockout of neuronal LRP1 prevents the increase in Aβ pathology caused by ApoE4 expression. These findings give insight into potential therapeutic targets for the preclinical phase of AD and the pathogenesis of Aβ pathology.

Authors

Michael R. Strickland, David M. Holtzman

×
Research Articles
Neoantigen screening identifies broad TP53 mutant immunogenicity in patients with epithelial cancers
Parisa Malekzadeh, … , Steven A. Rosenberg, Drew C. Deniger
Parisa Malekzadeh, … , Steven A. Rosenberg, Drew C. Deniger
Published February 4, 2019
Citation Information: J Clin Invest. 2019;129(3):e123791. https://doi.org/10.1172/JCI123791.
View: Text | PDF Concise Communication

Neoantigen screening identifies broad TP53 mutant immunogenicity in patients with epithelial cancers

  • Text
  • PDF
Abstract

Authors

Parisa Malekzadeh, Anna Pasetto, Paul F. Robbins, Maria R. Parkhurst, Biman C. Paria, Li Jia, Jared J. Gartner, Victoria Hill, Zhiya Yu, Nicholas P. Restifo, Abraham Sachs, Eric Tran, Winifred Lo, Robert P.T. Somerville, Steven A. Rosenberg, Drew C. Deniger

×

CD33 recruitment inhibits IgE-mediated anaphylaxis and desensitizes mast cells to allergen
Shiteng Duan, … , Reynold A. Panettieri Jr., James C. Paulson
Shiteng Duan, … , Reynold A. Panettieri Jr., James C. Paulson
Published January 15, 2019
Citation Information: J Clin Invest. 2019;129(3):e125456. https://doi.org/10.1172/JCI125456.
View: Text | PDF

CD33 recruitment inhibits IgE-mediated anaphylaxis and desensitizes mast cells to allergen

  • Text
  • PDF
Abstract

Allergen immunotherapy for patients with allergies begins with weekly escalating doses of allergen under medical supervision to monitor and treat IgE mast cell–mediated anaphylaxis. There is currently no treatment to safely desensitize mast cells to enable robust allergen immunotherapy with therapeutic levels of allergen. Here, we demonstrated that liposomal nanoparticles bearing an allergen and a high-affinity glycan ligand of the inhibitory receptor CD33 profoundly suppressed IgE-mediated activation of mast cells, prevented anaphylaxis in Tg mice with mast cells expressing human CD33, and desensitized mice to subsequent allergen challenge for several days. We showed that high levels of CD33 were consistently expressed on human skin mast cells and that the antigenic liposomes with CD33 ligand prevented IgE-mediated bronchoconstriction in slices of human lung. The results demonstrated the potential of exploiting CD33 to desensitize mast cells to provide a therapeutic window for administering allergen immunotherapy without triggering anaphylaxis.

Authors

Shiteng Duan, Cynthia J. Koziol-White, William F. Jester Jr., Scott A. Smith, Corwin M. Nycholat, Matthew S. Macauley, Reynold A. Panettieri Jr., James C. Paulson

×

Cullin5 deficiency promotes small-cell lung cancer metastasis by stabilizing integrin β1
Gaoxiang Zhao, … , Daming Gao, Hongbin Ji
Gaoxiang Zhao, … , Daming Gao, Hongbin Ji
Published January 28, 2019
Citation Information: J Clin Invest. 2019;129(3):972-987. https://doi.org/10.1172/JCI122779.
View: Text | PDF

Cullin5 deficiency promotes small-cell lung cancer metastasis by stabilizing integrin β1

  • Text
  • PDF
Abstract

Metastasis is the dominant cause of patient death in small-cell lung cancer (SCLC), and a better understanding of the molecular mechanisms underlying SCLC metastasis may potentially improve clinical treatment. Through genome-scale screening for key regulators of mouse Rb1–/– Trp53–/– SCLC metastasis using the pooled CRISPR/Cas9 library, we identified Cullin5 (CUL5) and suppressor of cytokine signaling 3 (SOCS3), two components of the Cullin-RING E3 ubiquitin ligase complex, as top candidates. Mechanistically, the deficiency of CUL5 or SOCS3 disrupted the functional formation of the E3 ligase complex and prevented the degradation of integrin β1, which stabilized integrin β1 and activated downstream focal adhesion kinase/SRC (FAK/SRC) signaling and eventually drove SCLC metastasis. Low expression levels of CUL5 and SOCS3 were significantly associated with high integrin β1 levels and poor prognosis in a large cohort of 128 clinical patients with SCLC. Moreover, the CUL5-deficient SCLCs were vulnerable to the treatment of the FDA-approved SRC inhibitor dasatinib. Collectively, this work identifies the essential role of CUL5- and SOCS3-mediated integrin β1 turnover in controlling SCLC metastasis, which might have therapeutic implications.

Authors

Gaoxiang Zhao, Liyan Gong, Dan Su, Yujuan Jin, Chenchen Guo, Meiting Yue, Shun Yao, Zhen Qin, Yi Ye, Ying Tang, Qibiao Wu, Jian Zhang, Binghai Cui, Qiurong Ding, Hsinyi Huang, Liang Hu, Yuting Chen, Peiyuan Zhang, Guohong Hu, Luonan Chen, Kwok-Kin Wong, Daming Gao, Hongbin Ji

×

Intact HIV-1 proviruses accumulate at distinct chromosomal positions during prolonged antiretroviral therapy
Kevin B. Einkauf, … , Xu G. Yu, Mathias Lichterfeld
Kevin B. Einkauf, … , Xu G. Yu, Mathias Lichterfeld
Published January 28, 2019
Citation Information: J Clin Invest. 2019;129(3):988-998. https://doi.org/10.1172/JCI124291.
View: Text | PDF

Intact HIV-1 proviruses accumulate at distinct chromosomal positions during prolonged antiretroviral therapy

  • Text
  • PDF
Abstract

Chromosomal integration of genome-intact HIV-1 sequences into the host genome creates a reservoir of virally infected cells that persists throughout life, necessitating indefinite antiretroviral suppression therapy. During effective antiviral treatment, the majority of these proviruses remain transcriptionally silent, but mechanisms responsible for viral latency are insufficiently clear. Here, we used matched integration site and proviral sequencing (MIP-Seq), an experimental approach involving multiple displacement amplification of individual proviral species, followed by near-full-length HIV-1 next-generation sequencing and corresponding chromosomal integration site analysis to selectively map the chromosomal positions of intact and defective proviruses in 3 HIV-1–infected individuals undergoing long-term antiretroviral therapy. Simultaneously, chromatin accessibility and gene expression in autologous CD4+ T cells were analyzed by assays for transposase-accessible chromatin using sequencing (ATAC-Seq) and RNA-Seq. We observed that in comparison to proviruses with defective sequences, intact HIV-1 proviruses were enriched for non-genic chromosomal positions and more frequently showed an opposite orientation relative to host genes. In addition, intact HIV-1 proviruses were preferentially integrated in either relative proximity to or increased distance from active transcriptional start sites and to accessible chromatin regions. These studies strongly suggest selection of intact proviruses with features of deeper viral latency during prolonged antiretroviral therapy, and may be informative for targeting the genome-intact viral reservoir.

Authors

Kevin B. Einkauf, Guinevere Q. Lee, Ce Gao, Radwa Sharaf, Xiaoming Sun, Stephane Hua, Samantha M.Y. Chen, Chenyang Jiang, Xiaodong Lian, Fatema Z. Chowdhury, Eric S. Rosenberg, Tae-Wook Chun, Jonathan Z. Li, Xu G. Yu, Mathias Lichterfeld

×

Dynamic ploidy changes drive fluconazole resistance in human cryptococcal meningitis
Neil R.H. Stone, … , Judith Berman, Tihana Bicanic
Neil R.H. Stone, … , Judith Berman, Tihana Bicanic
Published January 28, 2019
Citation Information: J Clin Invest. 2019;129(3):999-1014. https://doi.org/10.1172/JCI124516.
View: Text | PDF Clinical Research and Public Health

Dynamic ploidy changes drive fluconazole resistance in human cryptococcal meningitis

  • Text
  • PDF
Abstract

BACKGROUND. Cryptococcal meningitis (CM) causes an estimated 180,000 deaths annually, predominantly in sub-Saharan Africa, where most patients receive fluconazole (FLC) monotherapy. While relapse after FLC monotherapy with resistant strains is frequently observed, the mechanisms and impact of emergence of FLC resistance in human CM are poorly understood. Heteroresistance (HetR) — a resistant subpopulation within a susceptible strain — is a recently described phenomenon in Cryptococcus neoformans (Cn) and Cryptococcus gattii (Cg), the significance of which has not previously been studied in humans. METHODS. A cohort of 20 patients with HIV-associated CM in Tanzania was prospectively observed during therapy with either FLC monotherapy or in combination with flucytosine (5FC). Total and resistant subpopulations of Cryptococcus spp. were quantified directly from patient cerebrospinal fluid (CSF). Stored isolates underwent whole genome sequencing and phenotypic characterization. RESULTS. Heteroresistance was detectable in Cryptococcus spp. in the CSF of all patients at baseline (i.e., prior to initiation of therapy). During FLC monotherapy, the proportion of resistant colonies in the CSF increased during the first 2 weeks of treatment. In contrast, no resistant subpopulation was detectable in CSF by day 14 in those receiving a combination of FLC and 5FC. Genomic analysis revealed high rates of aneuploidy in heteroresistant colonies as well as in relapse isolates, with chromosome 1 (Chr1) disomy predominating. This is apparently due to the presence on Chr1 of ERG11, which is the FLC drug target, and AFR1, which encodes a drug efflux pump. In vitro efflux levels positively correlated with the level of heteroresistance. CONCLUSION. Our findings demonstrate for what we believe is the first time the presence and emergence of aneuploidy-driven FLC heteroresistance in human CM, association of efflux levels with heteroresistance, and the successful suppression of heteroresistance with 5FC/FLC combination therapy. FUNDING. This work was supported by the Wellcome Trust Strategic Award for Medical Mycology and Fungal Immunology 097377/Z/11/Z and the Daniel Turnberg Travel Fellowship.

Authors

Neil R.H. Stone, Johanna Rhodes, Matthew C. Fisher, Sayoki Mfinanga, Sokoine Kivuyo, Joan Rugemalila, Ella Shtifman Segal, Leor Needleman, Síle F. Molloy, June Kwon-Chung, Thomas S. Harrison, William Hope, Judith Berman, Tihana Bicanic

×

MAPK4 overexpression promotes tumor progression via noncanonical activation of AKT/mTOR signaling
Wei Wang, … , David D. Moore, Feng Yang
Wei Wang, … , David D. Moore, Feng Yang
Published January 28, 2019
Citation Information: J Clin Invest. 2019;129(3):1015-1029. https://doi.org/10.1172/JCI97712.
View: Text | PDF

MAPK4 overexpression promotes tumor progression via noncanonical activation of AKT/mTOR signaling

  • Text
  • PDF
Abstract

MAPK4 is an atypical MAPK. Currently, little is known about its physiological function and involvement in diseases, including cancer. A comprehensive analysis of 8887 gene expression profiles in The Cancer Genome Atlas (TCGA) revealed that MAPK4 overexpression correlates with decreased overall survival, with particularly marked survival effects in patients with lung adenocarcinoma, bladder cancer, low-grade glioma, and thyroid carcinoma. Interestingly, human tumor MAPK4 overexpression also correlated with phosphorylation of AKT, 4E-BP1, and p70S6K, independent of the loss of PTEN or mutation of PIK3CA. This led us to examine whether MAPK4 activates the key metabolic, prosurvival, and proliferative kinase AKT and mTORC1 signaling, independent of the canonical PI3K pathway. We found that MAPK4 activated AKT via a novel, concerted mechanism independent of PI3K. Mechanistically, MAPK4 directly bound and activated AKT by phosphorylation of the activation loop at threonine 308. It also activated mTORC2 to phosphorylate AKT at serine 473 for full activation. MAPK4 overexpression induced oncogenic outcomes, including transforming prostate epithelial cells into anchorage-independent growth, and MAPK4 knockdown inhibited cancer cell proliferation, anchorage-independent growth, and xenograft growth. We concluded that MAPK4 can promote cancer by activating the AKT/mTOR signaling pathway and that targeting MAPK4 may provide a novel therapeutic approach for cancer.

Authors

Wei Wang, Tao Shen, Bingning Dong, Chad J. Creighton, Yanling Meng, Wolong Zhou, Qing Shi, Hao Zhou, Yinjie Zhang, David D. Moore, Feng Yang

×

Stress-induced epinephrine enhances lactate dehydrogenase A and promotes breast cancer stem-like cells
Bai Cui, … , Keith W. Kelley, Quentin Liu
Bai Cui, … , Keith W. Kelley, Quentin Liu
Published January 28, 2019
Citation Information: J Clin Invest. 2019;129(3):1030-1046. https://doi.org/10.1172/JCI121685.
View: Text | PDF

Stress-induced epinephrine enhances lactate dehydrogenase A and promotes breast cancer stem-like cells

  • Text
  • PDF
Abstract

Chronic stress triggers activation of the sympathetic nervous system and drives malignancy. Using an immunodeficient murine system, we showed that chronic stress–induced epinephrine promoted breast cancer stem-like properties via lactate dehydrogenase A–dependent (LDHA-dependent) metabolic rewiring. Chronic stress–induced epinephrine activated LDHA to generate lactate, and the adjusted pH directed USP28-mediated deubiquitination and stabilization of MYC. The SLUG promoter was then activated by MYC, which promoted development of breast cancer stem-like traits. Using a drug screen that targeted LDHA, we found that a chronic stress–induced cancer stem-like phenotype could be reversed by vitamin C. These findings demonstrated the critical importance of psychological factors in promoting stem-like properties in breast cancer cells. Thus, the LDHA-lowering agent vitamin C can be a potential approach for combating stress-associated breast cancer.

Authors

Bai Cui, Yuanyuan Luo, Pengfei Tian, Fei Peng, Jinxin Lu, Yongliang Yang, Qitong Su, Bing Liu, Jiachuan Yu, Xi Luo, Liu Yin, Wei Cheng, Fan An, Bin He, Dapeng Liang, Sijin Wu, Peng Chu, Luyao Song, Xinyu Liu, Huandong Luo, Jie Xu, Yujia Pan, Yang Wang, Dangsheng Li, Peng Huang, Qingkai Yang, Lingqiang Zhang, Binhua P. Zhou, Suling Liu, Guowang Xu, Eric W.-F. Lam, Keith W. Kelley, Quentin Liu

×

Loss of ARHGEF1 causes a human primary antibody deficiency
Amine Bouafia, … , Eric Oksenhendler, Sven Kracker
Amine Bouafia, … , Eric Oksenhendler, Sven Kracker
Published December 6, 2018
Citation Information: J Clin Invest. 2019;129(3):1047-1060. https://doi.org/10.1172/JCI120572.
View: Text | PDF

Loss of ARHGEF1 causes a human primary antibody deficiency

  • Text
  • PDF
Abstract

ARHGEF1 is a RhoA-specific guanine nucleotide exchange factor expressed in hematopoietic cells. We used whole-exome sequencing to identify compound heterozygous mutations in ARHGEF1, resulting in the loss of ARHGEF1 protein expression in 2 primary antibody–deficient siblings presenting with recurrent severe respiratory tract infections and bronchiectasis. Both ARHGEF1-deficient patients showed an abnormal B cell immunophenotype, with a deficiency in marginal zone and memory B cells and an increased frequency of transitional B cells. Furthermore, the patients’ blood contained immature myeloid cells. Analysis of a mediastinal lymph node from one patient highlighted the small size of the germinal centers and an abnormally high plasma cell content. On the molecular level, T and B lymphocytes from both patients displayed low RhoA activity and low steady-state actin polymerization (even after stimulation of lysophospholipid receptors). As a consequence of disturbed regulation of the RhoA downstream target Rho-associated kinase I/II (ROCK), the patients’ lymphocytes failed to efficiently restrain AKT phosphorylation. Enforced ARHGEF1 expression or drug-induced activation of RhoA in the patients’ cells corrected the impaired actin polymerization and AKT regulation. Our results indicate that ARHGEF1 activity in human lymphocytes is involved in controlling actin cytoskeleton dynamics, restraining PI3K/AKT signaling, and confining B lymphocytes and myelocytes within their dedicated functional environment.

Authors

Amine Bouafia, Sébastien Lofek, Julie Bruneau, Loïc Chentout, Hicham Lamrini, Amélie Trinquand, Marie-Céline Deau, Lucie Heurtier, Véronique Meignin, Capucine Picard, Elizabeth Macintyre, Olivier Alibeu, Marc Bras, Thierry Jo Molina, Marina Cavazzana, Isabelle André-Schmutz, Anne Durandy, Alain Fischer, Eric Oksenhendler, Sven Kracker

×

Hyperfunctional complement C3 promotes C5-dependent atypical hemolytic uremic syndrome in mice
Kate Smith-Jackson, … , H. Terence Cook, Kevin J. Marchbank
Kate Smith-Jackson, … , H. Terence Cook, Kevin J. Marchbank
Published February 4, 2019
Citation Information: J Clin Invest. 2019;129(3):1061-1075. https://doi.org/10.1172/JCI99296.
View: Text | PDF

Hyperfunctional complement C3 promotes C5-dependent atypical hemolytic uremic syndrome in mice

  • Text
  • PDF
Abstract

Atypical hemolytic uremic syndrome (aHUS) is frequently associated in humans with loss-of-function mutations in complement-regulating proteins or gain-of-function mutations in complement-activating proteins. Thus, aHUS provides an archetypal complement-mediated disease with which to model new therapeutic strategies and treatments. Herein, we show that, when transferred to mice, an aHUS-associated gain-of-function change (D1115N) to the complement-activation protein C3 results in aHUS. Homozygous C3 p.D1115N (C3KI) mice developed spontaneous chronic thrombotic microangiopathy together with hematuria, thrombocytopenia, elevated creatinine, and evidence of hemolysis. Mice with active disease had reduced plasma C3 with C3 fragment and C9 deposition within the kidney. Therapeutic blockade or genetic deletion of C5, a protein downstream of C3 in the complement cascade, protected homozygous C3KI mice from thrombotic microangiopathy and aHUS. Thus, our data provide in vivo modeling evidence that gain-of-function changes in complement C3 drive aHUS. They also show that long-term C5 deficiency is not accompanied by development of other renal complications (such as C3 glomerulopathy) despite sustained dysregulation of C3. Our results suggest that this preclinical model will allow testing of novel complement inhibitors with the aim of developing precisely targeted therapeutics that could have application in many complement-mediated diseases.

Authors

Kate Smith-Jackson, Yi Yang, Harriet Denton, Isabel Y. Pappworth, Katie Cooke, Paul N. Barlow, John P. Atkinson, M. Kathryn Liszewski, Matthew C. Pickering, David Kavanagh, H. Terence Cook, Kevin J. Marchbank

×

Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain
Shouan Zhu, … , Xinzhong Dong, Xu Cao
Shouan Zhu, … , Xinzhong Dong, Xu Cao
Published December 11, 2018
Citation Information: J Clin Invest. 2019;129(3):1076-1093. https://doi.org/10.1172/JCI121561.
View: Text | PDF

Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain

  • Text
  • PDF
Abstract

Joint pain is the defining symptom of osteoarthritis (OA) but its origin and mechanisms remain unclear. Here, we investigated an unprecedented role of osteoclast-initiated subchondral bone remodeling in sensory innervation for OA pain. We show that osteoclasts secrete netrin-1 to induce sensory nerve axonal growth in subchondral bone. Reduction of osteoclast formation by knockout of receptor activator of nuclear factor kappa-B ligand (Rankl) in osteocytes inhibited the growth of sensory nerves into subchondral bone, dorsal root ganglion neuron hyperexcitability, and behavioral measures of pain hypersensitivity in OA mice. Moreover, we demonstrated a possible role for netrin-1 secreted by osteoclasts during aberrant subchondral bone remodeling in inducing sensory innervation and OA pain through its receptor DCC (deleted in colorectal cancer). Importantly, knockout of Netrin1 in tartrate-resistant acid phosphatase–positive (TRAP-positive) osteoclasts or knockdown of Dcc reduces OA pain behavior. In particular, inhibition of osteoclast activity by alendronate modifies aberrant subchondral bone remodeling and reduces innervation and pain behavior at the early stage of OA. These results suggest that intervention of the axonal guidance molecules (e.g., netrin-1) derived from aberrant subchondral bone remodeling may have therapeutic potential for OA pain.

Authors

Shouan Zhu, Jianxi Zhu, Gehua Zhen, Yihe Hu, Senbo An, Yusheng Li, Qin Zheng, Zhiyong Chen, Ya Yang, Mei Wan, Richard Leroy Skolasky, Yong Cao, Tianding Wu, Bo Gao, Mi Yang, Manman Gao, Julia Kuliwaba, Shuangfei Ni, Lei Wang, Chuanlong Wu, David Findlay, Holger K. Eltzschig, Hong Wei Ouyang, Janet Crane, Feng-Quan Zhou, Yun Guan, Xinzhong Dong, Xu Cao

×

Immune synapses between mast cells and γδ T cells limit viral infection
Chinmay Kumar Mantri, Ashley L. St. John
Chinmay Kumar Mantri, Ashley L. St. John
Published December 18, 2018
Citation Information: J Clin Invest. 2019;129(3):1094-1108. https://doi.org/10.1172/JCI122530.
View: Text | PDF

Immune synapses between mast cells and γδ T cells limit viral infection

  • Text
  • PDF
Abstract

Mast cells (MCs) are immune sentinels, but whether they also function as antigen-presenting cells (APCs) remains elusive. Using mouse models of MC deficiency, we report on MC-dependent recruitment and activation of multiple T cell subsets to the skin and draining lymph nodes (DLNs) during dengue virus (DENV) infection. Newly recruited and locally proliferating γδ T cells were the first T cell subset to respond to MC-driven inflammation, and their production of IFN-γ was MC dependent. MC–γδ T cell conjugates were observed consistently in infected peripheral tissues, suggesting a new role for MCs as nonconventional APCs for γδ T cells. MC-dependent γδ T cell activation and proliferation during DENV infection required T cell receptor (TCR) signaling and the nonconventional antigen presentation molecule endothelial cell protein C receptor (EPCR) on MCs. γδ T cells, not previously implicated in DENV host defense, killed infected targeted DCs and contributed to the clearance of DENV in vivo. We believe immune synapse formation between MCs and γδ T cells is a novel mechanism to induce specific and protective immunity at sites of viral infection.

Authors

Chinmay Kumar Mantri, Ashley L. St. John

×

Long noncoding RNA NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding protein NEXN
Yan-Wei Hu, … , Nilesh J. Samani, Shu Ye
Yan-Wei Hu, … , Nilesh J. Samani, Shu Ye
Published December 27, 2018
Citation Information: J Clin Invest. 2019;129(3):1115-1128. https://doi.org/10.1172/JCI98230.
View: Text | PDF

Long noncoding RNA NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding protein NEXN

  • Text
  • PDF
Abstract

Noncoding RNAs are emerging as important players in gene regulation and disease pathogeneses. Here, we show that a previously uncharacterized long noncoding RNA, nexilin F-actin binding protein antisense RNA 1 (NEXN-AS1), modulates the expression of the actin-binding protein NEXN and that NEXN exerts a protective role against atherosclerosis. An expression microarray analysis showed that the expression of both NEXN-AS1 and NEXN was reduced in human atherosclerotic plaques. In vitro experiments revealed that NEXN-AS1 interacted with the chromatin remodeler BAZ1A and the 5′ flanking region of the NEXN gene and that it also upregulated NEXN expression. Augmentation of NEXN-AS1 expression inhibited TLR4 oligomerization and NF-κB activity, downregulated the expression of adhesion molecules and inflammatory cytokines by endothelial cells, and suppressed monocyte adhesion to endothelial cells. These inhibitory effects of NEXN-AS1 were abolished by knockdown of NEXN. In vivo experiments using ApoE-knockout mice fed a Western high-fat diet demonstrated that NEXN deficiency promoted atherosclerosis and increased macrophage abundance in atherosclerotic lesions, with heightened expression of adhesion molecules and inflammatory cytokines, whereas augmented NEXN expression deterred atherosclerosis. Patients with coronary artery disease were found to have lower blood NEXN levels than healthy individuals. These results indicate that NEXN-AS1 and NEXN represent potential therapeutic targets in atherosclerosis-related diseases.

Authors

Yan-Wei Hu, Feng-Xia Guo, Yuan-Jun Xu, Pan Li, Zhi-Feng Lu, David G. McVey, Lei Zheng, Qian Wang, John H. Ye, Chun-Min Kang, Shao-Guo Wu, Jing-Jing Zhao, Xin Ma, Zhen Yang, Fu-Chun Fang, Yu-Rong Qiu, Bang-Ming Xu, Lei Xiao, Qian Wu, Li-Mei Wu, Li Ding, Tom R. Webb, Nilesh J. Samani, Shu Ye

×

PTEN-induced partial epithelial-mesenchymal transition drives diabetic kidney disease
Yajuan Li, … , Liuqing Yang, Chunru Lin
Yajuan Li, … , Liuqing Yang, Chunru Lin
Published February 11, 2019
Citation Information: J Clin Invest. 2019;129(3):1129-1151. https://doi.org/10.1172/JCI121987.
View: Text | PDF

PTEN-induced partial epithelial-mesenchymal transition drives diabetic kidney disease

  • Text
  • PDF
Abstract

Epithelial-mesenchymal transition (EMT) contributes significantly to interstitial matrix deposition in diabetic kidney disease (DKD). However, detection of EMT in kidney tissue is impracticable, and anti-EMT therapies have long been hindered. We reported that phosphatase and tensin homolog (PTEN) promoted transforming growth factor beta 1 (TGF-β), sonic hedgehog (SHH), connective tissue growth factor (CTGF), interleukin 6 (IL-6), and hyperglycemia-induced EMT when PTEN was modified by a MEX3C-catalyzed K27-linked polyubiquitination at lysine 80 (referred to as PTENK27-polyUb). Genetic inhibition of PTENK27-polyUb alleviated Col4a3 knockout–, folic acid–, and streptozotocin-induced (STZ-induced) kidney injury. Serum and urine PTENK27-polyUb concentrations were negatively correlated with glomerular filtration rate (GFR) for diabetic patients. Mechanistically, PTENK27-polyUb facilitated dephosphorylation and protein stabilization of TWIST, SNAI1, and YAP in renal epithelial cells, leading to enhanced EMT. We identified that a small molecule, triptolide, inhibited MEX3C-catalyzed PTENK27-polyUb and EMT of renal epithelial cells. Treatment with triptolide reduced TWIST, SNAI1, and YAP concurrently and improved kidney health in Col4a3 knockout–, folic acid–injured disease models and STZ-induced, BTBR ob/ob diabetic nephropathy models. Hence, we demonstrated the important role of PTENK27-polyUb in DKD and a promising therapeutic strategy that inhibited the progression of DKD.

Authors

Yajuan Li, Qingsong Hu, Chunlai Li, Ke Liang, Yu Xiang, Heidi Hsiao, Tina K. Nguyen, Peter K. Park, Sergey D. Egranov, Chandrashekar R. Ambati, Nagireddy Putluri, David H. Hawke, Leng Han, Mien-Chie Hung, Farhad R. Danesh, Liuqing Yang, Chunru Lin

×

Cingulum stimulation enhances positive affect and anxiolysis to facilitate awake craniotomy
Kelly R. Bijanki, … , Helen S. Mayberg, Jon T. Willie
Kelly R. Bijanki, … , Helen S. Mayberg, Jon T. Willie
Published December 27, 2018
Citation Information: J Clin Invest. 2019;129(3):1152-1166. https://doi.org/10.1172/JCI120110.
View: Text | PDF Clinical Research and Public Health

Cingulum stimulation enhances positive affect and anxiolysis to facilitate awake craniotomy

  • Text
  • PDF
Abstract

BACKGROUND. Awake neurosurgery requires patients to converse and respond to visual or verbal prompts to identify and protect brain tissue supporting essential functions such as language, primary sensory modalities, and motor function. These procedures can be poorly tolerated because of patient anxiety, yet acute anxiolytic medications typically cause sedation and impair cortical function. METHODS. In this study, direct electrical stimulation of the left dorsal anterior cingulum bundle was discovered to reliably evoke positive affect and anxiolysis without sedation in a patient with epilepsy undergoing research testing during standard inpatient intracranial electrode monitoring. These effects were quantified using subjective and objective behavioral measures, and stimulation was found to evoke robust changes in local and distant neural activity. RESULTS. The index patient ultimately required an awake craniotomy procedure to confirm safe resection margins in the treatment of her epilepsy. During the procedure, cingulum bundle stimulation enhanced positive affect and reduced the patient’s anxiety to the point that intravenous anesthetic/anxiolytic medications were discontinued and cognitive testing was completed. Behavioral responses were subsequently replicated in 2 patients with anatomically similar electrode placements localized to an approximately 1-cm span along the anterior dorsal cingulum bundle above genu of the corpus callosum. CONCLUSIONS. The current study demonstrates a robust anxiolytic response to cingulum bundle stimulation in 3 patients with epilepsy. TRIAL REGISTRATION. The current study was not affiliated with any formal clinical trial. FUNDING. This project was supported by the American Foundation for Suicide Prevention and the NIH.

Authors

Kelly R. Bijanki, Joseph R. Manns, Cory S. Inman, Ki Sueng Choi, Sahar Harati, Nigel P. Pedersen, Daniel L. Drane, Allison C. Waters, Rebecca E. Fasano, Helen S. Mayberg, Jon T. Willie

×

c-Abl regulates YAPY357 phosphorylation to activate endothelial atherogenic responses to disturbed flow
Bochuan Li, … , Yi Zhu, Ding Ai
Bochuan Li, … , Yi Zhu, Ding Ai
Published January 10, 2019
Citation Information: J Clin Invest. 2019;129(3):1167-1179. https://doi.org/10.1172/JCI122440.
View: Text | PDF

c-Abl regulates YAPY357 phosphorylation to activate endothelial atherogenic responses to disturbed flow

  • Text
  • PDF
Abstract

Local flow patterns determine the uneven distribution of atherosclerotic lesions. This research aims to elucidate the mechanism of regulation of nuclear translocation of Yes-associated protein (YAP) under oscillatory shear stress (OSS) in the atheroprone phenotype of endothelial cells (ECs). We report here that OSS led to tyrosine phosphorylation and strong, continuous nuclear translocation of YAP in ECs that is dependent on integrin α5β1 activation. YAP overexpression in ECs blunted the anti-atheroprone effect of an integrin α5β1–blocking peptide (ATN161) in Apoe–/– mice. Activation of integrin α5β1 induced tyrosine, but not serine, phosphorylation of YAP in ECs. Blockage of integrin α5β1 with ATN161 abolished the phosphorylation of YAP at Y357 induced by OSS. Mechanistic studies showed that c-Abl inhibitor attenuated the integrin α5β1–induced YAP tyrosine phosphorylation. Furthermore, the phosphorylation of c-Abl and YAPY357 was significantly increased in ECs in atherosclerotic vessels of mice and in human plaques versus normal vessels. Finally, bosutinib, a tyrosine kinase inhibitor, markedly reduced the level of YAPY357 and the development of atherosclerosis in Apoe–/– mice. The c-Abl/YAPY357 pathway serves as a mechanism for the activation of integrin α5β1 and the atherogenic phenotype of ECs in response to OSS, and provides a potential therapeutic strategy for atherogenesis.

Authors

Bochuan Li, Jinlong He, Huizhen Lv, Yajin Liu, Xue Lv, Chenghu Zhang, Yi Zhu, Ding Ai

×

Single-nucleotide human disease mutation inactivates a blood-regenerative GATA2 enhancer
Alexandra A. Soukup, … , Sunduz Keles, Emery H. Bresnick
Alexandra A. Soukup, … , Sunduz Keles, Emery H. Bresnick
Published January 8, 2019
Citation Information: J Clin Invest. 2019;129(3):1180-1192. https://doi.org/10.1172/JCI122694.
View: Text | PDF

Single-nucleotide human disease mutation inactivates a blood-regenerative GATA2 enhancer

  • Text
  • PDF
Abstract

The development and function of stem and progenitor cells that produce blood cells are vital in physiology. GATA-binding protein 2 (GATA2) mutations cause GATA-2 deficiency syndrome involving immunodeficiency, myelodysplastic syndrome, and acute myeloid leukemia. GATA-2 physiological activities necessitate that it be strictly regulated, and cell type–specific enhancers fulfill this role. The +9.5 intronic enhancer harbors multiple conserved cis-elements, and germline mutations of these cis-elements are pathogenic in humans. Since mechanisms underlying how GATA2 enhancer disease mutations impact hematopoiesis and pathology are unclear, we generated mouse models of the enhancer mutations. While a multi-motif mutant was embryonically lethal, a single-nucleotide Ets motif mutant was viable, and steady-state hematopoiesis was normal. However, the Ets motif mutation abrogated stem/progenitor cell regeneration following stress. These results reveal a new mechanism in human genetics, in which a disease predisposition mutation inactivates enhancer regenerative activity, while sparing developmental activity. Mutational sensitization to stress that instigates hematopoietic failure constitutes a paradigm for GATA-2 deficiency syndrome and other contexts of GATA-2–dependent pathogenesis.

Authors

Alexandra A. Soukup, Ye Zheng, Charu Mehta, Jun Wu, Peng Liu, Miao Cao, Inga Hofmann, Yun Zhou, Jing Zhang, Kirby D. Johnson, Kyunghee Choi, Sunduz Keles, Emery H. Bresnick

×

Reduced expression of phosphatase PTPN2 promotes pathogenic conversion of Tregs in autoimmunity
Mattias N.D. Svensson, … , Pandurangan Vijayanand, Nunzio Bottini
Mattias N.D. Svensson, … , Pandurangan Vijayanand, Nunzio Bottini
Published January 8, 2019
Citation Information: J Clin Invest. 2019;129(3):1193-1210. https://doi.org/10.1172/JCI123267.
View: Text | PDF

Reduced expression of phosphatase PTPN2 promotes pathogenic conversion of Tregs in autoimmunity

  • Text
  • PDF
Abstract

Genetic variants at the PTPN2 locus, which encodes the tyrosine phosphatase PTPN2, cause reduced gene expression and are linked to rheumatoid arthritis (RA) and other autoimmune diseases. PTPN2 inhibits signaling through the T cell and cytokine receptors, and loss of PTPN2 promotes T cell expansion and CD4- and CD8-driven autoimmunity. However, it remains unknown whether loss of PTPN2 in FoxP3+ regulatory T cells (Tregs) plays a role in autoimmunity. Here we aimed to model human autoimmune-predisposing PTPN2 variants, the presence of which results in a partial loss of PTPN2 expression, in mouse models of RA. We identified that reduced expression of Ptpn2 enhanced the severity of autoimmune arthritis in the T cell–dependent SKG mouse model and demonstrated that this phenotype was mediated through a Treg-intrinsic mechanism. Mechanistically, we found that through dephosphorylation of STAT3, PTPN2 inhibits IL-6–driven pathogenic loss of FoxP3 after Tregs have acquired RORγt expression, at a stage when chromatin accessibility for STAT3-targeted IL-17–associated transcription factors is maximized. We conclude that PTPN2 promotes FoxP3 stability in mouse RORγt+ Tregs and that loss of function of PTPN2 in Tregs contributes to the association between PTPN2 and autoimmunity.

Authors

Mattias N.D. Svensson, Karen M. Doody, Benjamin J. Schmiedel, Sourya Bhattacharyya, Bharat Panwar, Florian Wiede, Shen Yang, Eugenio Santelli, Dennis J. Wu, Cristiano Sacchetti, Ravindra Gujar, Gregory Seumois, William B. Kiosses, Isabelle Aubry, Gisen Kim, Piotr Mydel, Shimon Sakaguchi, Mitchell Kronenberg, Tony Tiganis, Michel L. Tremblay, Ferhat Ay, Pandurangan Vijayanand, Nunzio Bottini

×

PARP inhibition enhances tumor cell–intrinsic immunity in ERCC1-deficient non–small cell lung cancer
Roman M. Chabanon, … , Christopher J. Lord, Sophie Postel-Vinay
Roman M. Chabanon, … , Christopher J. Lord, Sophie Postel-Vinay
Published December 27, 2018
Citation Information: J Clin Invest. 2019;129(3):1211-1228. https://doi.org/10.1172/JCI123319.
View: Text | PDF

PARP inhibition enhances tumor cell–intrinsic immunity in ERCC1-deficient non–small cell lung cancer

  • Text
  • PDF
Abstract

The cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) pathway detects cytosolic DNA to activate innate immune responses. Poly(ADP-ribose) polymerase inhibitors (PARPi) selectively target cancer cells with DNA repair deficiencies such as those caused by BRCA1 mutations or ERCC1 defects. Using isogenic cell lines and patient-derived samples, we showed that ERCC1-defective non–small cell lung cancer (NSCLC) cells exhibit an enhanced type I IFN transcriptomic signature and that low ERCC1 expression correlates with increased lymphocytic infiltration. We demonstrated that clinical PARPi, including olaparib and rucaparib, have cell-autonomous immunomodulatory properties in ERCC1-defective NSCLC and BRCA1-defective triple-negative breast cancer (TNBC) cells. Mechanistically, PARPi generated cytoplasmic chromatin fragments with characteristics of micronuclei; these were found to activate cGAS/STING, downstream type I IFN signaling, and CCL5 secretion. Importantly, these effects were suppressed in PARP1-null TNBC cells, suggesting that this phenotype resulted from an on-target effect of PARPi on PARP1. PARPi also potentiated IFN-γ–induced PD-L1 expression in NSCLC cell lines and in fresh patient tumor cells; this effect was enhanced in ERCC1-deficient contexts. Our data provide a preclinical rationale for using PARPi as immunomodulatory agents in appropriately molecularly selected populations.

Authors

Roman M. Chabanon, Gareth Muirhead, Dragomir B. Krastev, Julien Adam, Daphné Morel, Marlène Garrido, Andrew Lamb, Clémence Hénon, Nicolas Dorvault, Mathieu Rouanne, Rebecca Marlow, Ilirjana Bajrami, Marta Llorca Cardeñosa, Asha Konde, Benjamin Besse, Alan Ashworth, Stephen J. Pettitt, Syed Haider, Aurélien Marabelle, Andrew N.J. Tutt, Jean-Charles Soria, Christopher J. Lord, Sophie Postel-Vinay

×

DEGS1-associated aberrant sphingolipid metabolism impairs nervous system function in humans
Gergely Karsai, … , Thorsten Hornemann, Ingo Kurth
Gergely Karsai, … , Thorsten Hornemann, Ingo Kurth
Published January 8, 2019
Citation Information: J Clin Invest. 2019;129(3):1229-1239. https://doi.org/10.1172/JCI124159.
View: Text | PDF Clinical Research and Public Health

DEGS1-associated aberrant sphingolipid metabolism impairs nervous system function in humans

  • Text
  • PDF
Abstract

BACKGROUND. Sphingolipids are important components of cellular membranes and functionally associated with fundamental processes such as cell differentiation, neuronal signaling, and myelin sheath formation. Defects in the synthesis or degradation of sphingolipids leads to various neurological pathologies; however, the entire spectrum of sphingolipid metabolism disorders remains elusive. METHODS. A combined approach of genomics and lipidomics was applied to identify and characterize a human sphingolipid metabolism disorder. RESULTS. By whole-exome sequencing in a patient with a multisystem neurological disorder of both the central and peripheral nervous systems, we identified a homozygous p.Ala280Val variant in DEGS1, which catalyzes the last step in the ceramide synthesis pathway. The blood sphingolipid profile in the patient showed a significant increase in dihydro sphingolipid species that was further recapitulated in patient-derived fibroblasts, in CRISPR/Cas9–derived DEGS1-knockout cells, and by pharmacological inhibition of DEGS1. The enzymatic activity in patient fibroblasts was reduced by 80% compared with wild-type cells, which was in line with a reduced expression of mutant DEGS1 protein. Moreover, an atypical and potentially neurotoxic sphingosine isomer was identified in patient plasma and in cells expressing mutant DEGS1. CONCLUSION. We report DEGS1 dysfunction as the cause of a sphingolipid disorder with hypomyelination and degeneration of both the central and peripheral nervous systems. TRIAL REGISTRATION. Not applicable. FUNDING. Seventh Framework Program of the European Commission, Swiss National Foundation, Rare Disease Initiative Zurich.

Authors

Gergely Karsai, Florian Kraft, Natja Haag, G. Christoph Korenke, Benjamin Hänisch, Alaa Othman, Saranya Suriyanarayanan, Regula Steiner, Cordula Knopp, Michael Mull, Markus Bergmann, J. Michael Schröder, Joachim Weis, Miriam Elbracht, Matthias Begemann, Thorsten Hornemann, Ingo Kurth

×

Loss of the sphingolipid desaturase DEGS1 causes hypomyelinating leukodystrophy
Devesh C. Pant, … , Odile Boespflug-Tanguy, Aurora Pujol
Devesh C. Pant, … , Odile Boespflug-Tanguy, Aurora Pujol
Published January 8, 2019
Citation Information: J Clin Invest. 2019;129(3):1240-1256. https://doi.org/10.1172/JCI123959.
View: Text | PDF

Loss of the sphingolipid desaturase DEGS1 causes hypomyelinating leukodystrophy

  • Text
  • PDF
Abstract

Sphingolipid imbalance is the culprit in a variety of neurological diseases, some affecting the myelin sheath. We have used whole-exome sequencing in patients with undetermined leukoencephalopathies to uncover the endoplasmic reticulum lipid desaturase DEGS1 as the causative gene in 19 patients from 13 unrelated families. Shared features among the cases include severe motor arrest, early nystagmus, dystonia, spasticity, and profound failure to thrive. MRI showed hypomyelination, thinning of the corpus callosum, and progressive thalamic and cerebellar atrophy, suggesting a critical role of DEGS1 in myelin development and maintenance. This enzyme converts dihydroceramide (DhCer) into ceramide (Cer) in the final step of the de novo biosynthesis pathway. We detected a marked increase of the substrate DhCer and DhCer/Cer ratios in patients’ fibroblasts and muscle. Further, we used a knockdown approach for disease modeling in Danio rerio, followed by a preclinical test with the first-line treatment for multiple sclerosis, fingolimod (FTY720, Gilenya). The enzymatic inhibition of Cer synthase by fingolimod, 1 step prior to DEGS1 in the pathway, reduced the critical DhCer/Cer imbalance and the severe locomotor disability, increasing the number of myelinating oligodendrocytes in a zebrafish model. These proof-of-concept results pave the way to clinical translation.

Authors

Devesh C. Pant, Imen Dorboz, Agatha Schluter, Stéphane Fourcade, Nathalie Launay, Javier Joya, Sergio Aguilera-Albesa, Maria Eugenia Yoldi, Carlos Casasnovas, Mary J. Willis, Montserrat Ruiz, Dorothée Ville, Gaetan Lesca, Karine Siquier-Pernet, Isabelle Desguerre, Huifang Yan, Jingmin Wang, Margit Burmeister, Lauren Brady, Mark Tarnopolsky, Carles Cornet, Davide Rubbini, Javier Terriente, Kiely N. James, Damir Musaev, Maha S. Zaki, Marc C. Patterson, Brendan C. Lanpher, Eric W. Klee, Filippo Pinto e Vairo, Elizabeth Wohler, Nara Lygia de M. Sobreira, Julie S. Cohen, Reza Maroofian, Hamid Galehdari, Neda Mazaheri, Gholamreza Shariati, Laurence Colleaux, Diana Rodriguez, Joseph G. Gleeson, Cristina Pujades, Ali Fatemi, Odile Boespflug-Tanguy, Aurora Pujol

×

microRNA-142–mediated repression of phosphodiesterase 3B critically regulates peripheral immune tolerance
Nelomi Anandagoda, … , Jane K. Howard, Graham M. Lord
Nelomi Anandagoda, … , Jane K. Howard, Graham M. Lord
Published February 11, 2019
Citation Information: J Clin Invest. 2019;129(3):1257-1271. https://doi.org/10.1172/JCI124725.
View: Text | PDF

microRNA-142–mediated repression of phosphodiesterase 3B critically regulates peripheral immune tolerance

  • Text
  • PDF
Abstract

Tregs play a fundamental role in immune tolerance via control of self-reactive effector T cells (Teffs). This function is dependent on maintenance of a high intracellular cAMP concentration. A number of microRNAs are implicated in the maintenance of Tregs. In this study, we demonstrate that peripheral immune tolerance is critically dependent on posttranscriptional repression of the cAMP-hydrolyzing enzyme phosphodiesterase-3b (Pde3b) by microRNA-142-5p (miR-142-5p). In this manner, miR-142-5p acts as an immunometabolic regulator of intracellular cAMP, controlling Treg suppressive function. Mir142 was associated with a super enhancer bound by the Treg lineage–determining transcription factor forkhead box P3 (FOXP3), and Treg-specific deletion of miR-142 in mice (TregΔ142) resulted in spontaneous, lethal, multisystem autoimmunity, despite preserved numbers of phenotypically normal Tregs. Pharmacological inhibition and genetic ablation of PDE3B prevented autoimmune disease and reversed the impaired suppressive function of Tregs in TregΔ142 animals. These findings reveal a critical molecular switch, specifying Treg function through the modulation of a highly conserved, cell-intrinsic metabolic pathway. Modulation of this pathway has direct relevance to the pathogenesis and treatment of autoimmunity and cancer.

Authors

Nelomi Anandagoda, Joanna C.D. Willis, Arnulf Hertweck, Luke B. Roberts, Ian Jackson, M. Refik Gökmen, Richard G. Jenner, Jane K. Howard, Graham M. Lord

×

APOE4-mediated amyloid-β pathology depends on its neuronal receptor LRP1
Masaya Tachibana, … , Guojun Bu, Takahisa Kanekiyo
Masaya Tachibana, … , Guojun Bu, Takahisa Kanekiyo
Published February 11, 2019
Citation Information: J Clin Invest. 2019;129(3):1272-1277. https://doi.org/10.1172/JCI124853.
View: Text | PDF Concise Communication

APOE4-mediated amyloid-β pathology depends on its neuronal receptor LRP1

  • Text
  • PDF
Abstract

Carrying the ε4 allele of the APOE gene encoding apolipoprotein E (APOE4) markedly increases the risk for late-onset Alzheimer’s disease (AD), in which APOE4 exacerbates the brain accumulation and subsequent deposition of amyloid-β (Aβ) peptides. While the LDL receptor–related protein 1 (LRP1) is a major apoE receptor in the brain, we found that its levels are associated with those of insoluble Aβ depending on APOE genotype status in postmortem AD brains. Thus, to determine the functional interaction of apoE4 and LRP1 in brain Aβ metabolism, we crossed neuronal LRP1-knockout mice with amyloid model APP/PS1 mice and APOE3–targeted replacement (APO3-TR) or APOE4-TR mice. Consistent with previous findings, mice expressing apoE4 had increased Aβ deposition and insoluble amounts of Aβ40 and Aβ42 in the hippocampus of APP/PS1 mice compared with those expressing apoE3. Intriguingly, such effects were reversed in the absence of neuronal LRP1. Neuronal LRP1 deficiency also increased detergent-soluble apoE4 levels, which may contribute to the inhibition of Aβ deposition. Together, our results suggest that apoE4 exacerbates Aβ pathology through a mechanism that depends on neuronal LRP1. A better understanding of apoE isoform–specific interaction with their metabolic receptor LRP1 on Aβ metabolism is crucial for defining APOE4-related risk for AD.

Authors

Masaya Tachibana, Marie-Louise Holm, Chia-Chen Liu, Mitsuru Shinohara, Tomonori Aikawa, Hiroshi Oue, Yu Yamazaki, Yuka A. Martens, Melissa E. Murray, Patrick M. Sullivan, Kathrin Weyer, Simon Glerup, Dennis W. Dickson, Guojun Bu, Takahisa Kanekiyo

×

Antigen delivery targeted to tumor-associated macrophages overcomes tumor immune resistance
Daisuke Muraoka, … , Naozumi Harada, Hiroshi Shiku
Daisuke Muraoka, … , Naozumi Harada, Hiroshi Shiku
Published January 10, 2019
Citation Information: J Clin Invest. 2019;129(3):1278-1294. https://doi.org/10.1172/JCI97642.
View: Text | PDF

Antigen delivery targeted to tumor-associated macrophages overcomes tumor immune resistance

  • Text
  • PDF
Abstract

Immune checkpoint inhibitors and adoptive transfer of gene-engineered T cells have emerged as novel therapeutic modalities for hard-to-treat solid tumors; however, many patients are refractory to these immunotherapies, and the mechanisms underlying tumor immune resistance have not been fully elucidated. By comparing the tumor microenvironment of checkpoint inhibition–sensitive and –resistant murine solid tumors, we observed that the resistant tumors had low immunogenicity. We identified antigen presentation by CD11b+F4/80+ tumor–associated macrophages (TAMs) as a key factor correlated with immune resistance. In the resistant tumors, TAMs remained inactive and did not exert antigen-presenting activity. Targeted delivery of a long peptide antigen to TAMs by using a nano-sized hydrogel (nanogel) in the presence of a TLR agonist activated TAMs, induced their antigen-presenting activity, and thereby transformed the resistant tumors into tumors sensitive to adaptive immune responses such as adoptive transfer of tumor-specific T cell receptor–engineered T cells. These results indicate that the status and function of TAMs have a significant impact on tumor immune sensitivity and that manipulation of TAM functions would be an effective approach for improving the efficacy of immunotherapies.

Authors

Daisuke Muraoka, Naohiro Seo, Tae Hayashi, Yoshiro Tahara, Keisuke Fujii, Isao Tawara, Yoshihiro Miyahara, Kana Okamori, Hideo Yagita, Seiya Imoto, Rui Yamaguchi, Mitsuhiro Komura, Satoru Miyano, Masahiro Goto, Shin-ichi Sawada, Akira Asai, Hiroaki Ikeda, Kazunari Akiyoshi, Naozumi Harada, Hiroshi Shiku

×

Podocyte histone deacetylase activity regulates murine and human glomerular diseases
Kazunori Inoue, … , Francis P. Wilson, Shuta Ishibe
Kazunori Inoue, … , Francis P. Wilson, Shuta Ishibe
Published February 18, 2019
Citation Information: J Clin Invest. 2019;129(3):1295-1313. https://doi.org/10.1172/JCI124030.
View: Text | PDF

Podocyte histone deacetylase activity regulates murine and human glomerular diseases

  • Text
  • PDF
Abstract

We identified 2 genes, histone deacetylase 1 (HDAC1) and HDAC2, contributing to the pathogenesis of proteinuric kidney diseases, the leading cause of end-stage kidney disease. mRNA expression profiling from proteinuric mouse glomeruli was linked to Connectivity Map databases, identifying HDAC1 and HDAC2 with the differentially expressed gene set reversible by HDAC inhibitors. In numerous progressive glomerular disease models, treatment with valproic acid (a class I HDAC inhibitor) or SAHA (a pan-HDAC inhibitor) mitigated the degree of proteinuria and glomerulosclerosis, leading to a striking increase in survival. Podocyte HDAC1 and HDAC2 activities were increased in mice podocytopathy models, and podocyte-associated Hdac1 and Hdac2 genetic ablation improved proteinuria and glomerulosclerosis. Podocyte early growth response 1 (EGR1) was increased in proteinuric patients and mice in an HDAC1- and HDAC2-dependent manner. Loss of EGR1 in mice reduced proteinuria and glomerulosclerosis. Longitudinal analysis of the multicenter Veterans Aging Cohort Study demonstrated a 30% reduction in mean annual loss of estimated glomerular filtration rate, and this effect was more pronounced in proteinuric patients receiving valproic acid. These results strongly suggest that inhibition of HDAC1 and HDAC2 activities may suppress the progression of human proteinuric kidney diseases through the regulation of EGR1.

Authors

Kazunori Inoue, Geliang Gan, Maria Ciarleglio, Yan Zhang, Xuefei Tian, Christopher E. Pedigo, Corey Cavanaugh, Janet Tate, Ying Wang, Elizabeth Cross, Marwin Groener, Nathan Chai, Zhen Wang, Amy Justice, Zhenhai Zhang, Chirag R. Parikh, Francis P. Wilson, Shuta Ishibe

×

Mucosal vaccine efficacy against intrarectal SHIV is independent of anti-Env antibody response
Yongjun Sui, … , Robert C. Gallo, Jay A. Berzofsky
Yongjun Sui, … , Robert C. Gallo, Jay A. Berzofsky
Published February 18, 2019
Citation Information: J Clin Invest. 2019;129(3):1314-1328. https://doi.org/10.1172/JCI122110.
View: Text | PDF

Mucosal vaccine efficacy against intrarectal SHIV is independent of anti-Env antibody response

  • Text
  • PDF
Abstract

It is widely believed that protection against acquisition of HIV or SIV infection requires anti-envelope (anti-Env) antibodies, and that cellular immunity may affect viral loads but not acquisition, except in special cases. Here we provide evidence to the contrary. Mucosal immunization may enhance HIV vaccine efficacy by eliciting protective responses at portals of exposure. Accordingly, we vaccinated macaques mucosally with HIV/SIV peptides, modified vaccinia Ankara–SIV (MVA-SIV), and HIV-gp120–CD4 fusion protein plus adjuvants, which consistently reduced infection risk against heterologous intrarectal SHIVSF162P4 challenge, both high dose and repeated low dose. Surprisingly, vaccinated animals exhibited no anti-gp120 humoral responses above background and Gag- and Env-specific T cells were induced but failed to correlate with viral acquisition. Instead, vaccine-induced gut microbiome alteration and myeloid cell accumulation in colorectal mucosa correlated with protection. Ex vivo stimulation of the myeloid cell–enriched population with SHIV led to enhanced production of trained immunity markers TNF-α and IL-6, as well as viral coreceptor agonist MIP1α, which correlated with reduced viral Gag expression and in vivo viral acquisition. Overall, our results suggest mechanisms involving trained innate mucosal immunity together with antigen-specific T cells, and also indicate that vaccines can have critical effects on the gut microbiome, which in turn can affect resistance to infection. Strategies to elicit similar responses may be considered for vaccine designs to achieve optimal protective efficacy.

Authors

Yongjun Sui, George K. Lewis, Yichuan Wang, Kurt Berckmueller, Blake Frey, Amiran Dzutsev, Diego Vargas-Inchaustegui, Venkatramanan Mohanram, Thomas Musich, Xiaoying Shen, Anthony DeVico, Timothy Fouts, David Venzon, James Kirk, Robert C. Waters, James Talton, Dennis Klinman, John Clements, Georgia D. Tomaras, Genoveffa Franchini, Marjorie Robert-Guroff, Giorgio Trinchieri, Robert C. Gallo, Jay A. Berzofsky

×

Inhibiting Wee1 and ATR kinases produces tumor-selective synthetic lethality and suppresses metastasis
Amirali B. Bukhari, … , Gordon K. Chan, Armin M. Gamper
Amirali B. Bukhari, … , Gordon K. Chan, Armin M. Gamper
Published January 15, 2019
Citation Information: J Clin Invest. 2019;129(3):1329-1344. https://doi.org/10.1172/JCI122622.
View: Text | PDF

Inhibiting Wee1 and ATR kinases produces tumor-selective synthetic lethality and suppresses metastasis

  • Text
  • PDF
Abstract

We used the cancer-intrinsic property of oncogene-induced DNA damage as the base for a conditional synthetic lethality approach. To target mechanisms important for cancer cell adaptation to genotoxic stress and thereby to achieve cancer cell–specific killing, we combined inhibition of the kinases ATR and Wee1. Wee1 regulates cell cycle progression, whereas ATR is an apical kinase in the DNA-damage response. In an orthotopic breast cancer model, tumor-selective synthetic lethality of the combination of bioavailable ATR and Wee1 inhibitors led to tumor remission and inhibited metastasis with minimal side effects. ATR and Wee1 inhibition had a higher synergistic effect in cancer stem cells than in bulk cancer cells, compensating for the lower sensitivity of cancer stem cells to the individual drugs. Mechanistically, the combination treatment caused cells with unrepaired or under-replicated DNA to enter mitosis leading to mitotic catastrophe. As these inhibitors of ATR and Wee1 are already in phase I/II clinical trials, this knowledge could soon be translated into the clinic, especially as we showed that the combination treatment targets a wide range of tumor cells. Particularly, the antimetastatic effect of combined Wee1/ATR inhibition and the low toxicity of ATR inhibitors compared with Chk1 inhibitors have great clinical potential.

Authors

Amirali B. Bukhari, Cody W. Lewis, Joanna J. Pearce, Deandra Luong, Gordon K. Chan, Armin M. Gamper

×

Endogenous glucocorticoids prevent gastric metaplasia by suppressing spontaneous inflammation
Jonathan T. Busada, … , Donald N. Cook, John A. Cidlowski
Jonathan T. Busada, … , Donald N. Cook, John A. Cidlowski
Published January 17, 2019
Citation Information: J Clin Invest. 2019;129(3):1345-1358. https://doi.org/10.1172/JCI123233.
View: Text | PDF

Endogenous glucocorticoids prevent gastric metaplasia by suppressing spontaneous inflammation

  • Text
  • PDF
Abstract

In the stomach, chronic inflammation causes metaplasia and creates a favorable environment for the evolution of gastric cancer. Glucocorticoids are steroid hormones that repress proinflammatory stimuli, but their role in the stomach is unknown. In this study, we show that endogenous glucocorticoids are required to maintain gastric homeostasis. Removal of circulating glucocorticoids in mice by adrenalectomy resulted in the rapid onset of spontaneous gastric inflammation, oxyntic atrophy, and spasmolytic polypeptide-expressing metaplasia (SPEM), a putative precursor of gastric cancer. SPEM and oxyntic atrophy occurred independently of lymphocytes. However, depletion of monocytes and macrophages by clodronate treatment or inhibition of gastric monocyte infiltration using the Cx3cr1 knockout mouse model prevented SPEM development. Our results highlight the requirement for endogenous glucocorticoid signaling within the stomach to prevent spontaneous gastric inflammation and metaplasia, and suggest that glucocorticoid deficiency may lead to gastric cancer development.

Authors

Jonathan T. Busada, Sivapriya Ramamoorthy, Derek W. Cain, Xiaojiang Xu, Donald N. Cook, John A. Cidlowski

×

Monoclonal antibody targeting BDCA2 ameliorates skin lesions in systemic lupus erythematosus
Richard Furie, … , Dania Rabah, Nathalie Franchimont
Richard Furie, … , Dania Rabah, Nathalie Franchimont
Published January 15, 2019
Citation Information: J Clin Invest. 2019;129(3):1359-1371. https://doi.org/10.1172/JCI124466.
View: Text | PDF Clinical Research and Public Health

Monoclonal antibody targeting BDCA2 ameliorates skin lesions in systemic lupus erythematosus

  • Text
  • PDF
Abstract

BACKGROUND. Plasmacytoid DCs (pDC) produce large amounts of type I IFN (IFN-I), cytokines convincingly linked to systemic lupus erythematosus (SLE) pathogenesis. BIIB059 is a humanized mAb that binds blood DC antigen 2 (BDCA2), a pDC-specific receptor that inhibits the production of IFN-I and other inflammatory mediators when ligated. A first-in-human study was conducted to assess safety, tolerability, and pharmacokinetic (PK) and pharmacodynamic (PD) effects of single BIIB059 doses in healthy volunteers (HV) and patients with SLE with active cutaneous disease as well as proof of biological activity and preliminary clinical response in the SLE cohort. METHODS. A randomized, double-blind, placebo-controlled clinical trial was conducted in HV (n = 54) and patients with SLE (n = 12). All subjects were monitored for adverse events. Serum BIIB059 concentrations, BDCA2 levels on pDCs, and IFN-responsive biomarkers in whole blood and skin biopsies were measured. Skin disease activity was determined using the Cutaneous Lupus Erythematosus Disease Area and Severity Index Activity (CLASI-A). RESULTS. Single doses of BIIB059 were associated with favorable safety and PK profiles. BIIB059 administration led to BDCA2 internalization on pDCs, which correlated with circulating BIIB059 levels. BIIB059 administration in patients with SLE decreased expression of IFN response genes in blood, normalized MxA expression, reduced immune infiltrates in skin lesions, and decreased CLASI-A score. CONCLUSIONS. Single doses of BIIB059 were associated with favorable safety and PK/PD profiles and robust target engagement and biological activity, supporting further development of BIIB059 in SLE. The data suggest that targeting pDCs may be beneficial for patients with SLE, especially those with cutaneous manifestations. TRIAL REGISTRATION. ClinicalTrials.gov NCT02106897. FUNDING. Biogen Inc.

Authors

Richard Furie, Victoria P. Werth, Joseph F. Merola, Lauren Stevenson, Taylor L. Reynolds, Himanshu Naik, Wenting Wang, Romy Christmann, Agnes Gardet, Alex Pellerin, Stefan Hamann, Pavan Auluck, Catherine Barbey, Parul Gulati, Dania Rabah, Nathalie Franchimont

×

Platelet-derived miR-223 promotes a phenotypic switch in arterial injury repair
Zhi Zeng, … , John Hwa, Wai Ho Tang
Zhi Zeng, … , John Hwa, Wai Ho Tang
Published January 15, 2019
Citation Information: J Clin Invest. 2019;129(3):1372-1386. https://doi.org/10.1172/JCI124508.
View: Text | PDF

Platelet-derived miR-223 promotes a phenotypic switch in arterial injury repair

  • Text
  • PDF
Abstract

Upon arterial injury, endothelial denudation leads to platelet activation and delivery of multiple agents (e.g., TXA2, PDGF), promoting VSMC dedifferentiation and proliferation (intimal hyperplasia) during injury repair. The process of resolution of vessel injury repair, and prevention of excessive repair (switching VSMCs back to a differentiated quiescent state), is poorly understood. We now report that internalization of APs by VSMCs promotes resolution of arterial injury by switching on VSMC quiescence. Ex vivo and in vivo studies using lineage tracing reporter mice (PF4-cre × mT/mG) demonstrated uptake of GFP-labeled platelets (mG) by mTomato red–labeled VSMCs (mT) upon arterial wire injury. Genome-wide miRNA sequencing of VSMCs cocultured with APs identified significant increases in platelet-derived miR-223. miR-223 appears to directly target PDGFRβ (in VSMCs), reversing the injury-induced dedifferentiation. Upon arterial injury, platelet miR-223–KO mice exhibited increased intimal hyperplasia, whereas miR-223 mimics reduced intimal hyperplasia. Diabetic mice with reduced expression of miR-223 exhibited enhanced VSMC dedifferentiation and proliferation and increased intimal hyperplasia. Our results suggest that horizontal transfer of platelet-derived miRNAs into VSMCs provides a novel mechanism for regulating VSMC phenotypic switching. Platelets thus play a dual role in vascular injury repair, initiating an immediate repair process and, concurrently, a delayed process to prevent excessive repair.

Authors

Zhi Zeng, Luoxing Xia, Xuejiao Fan, Allison C. Ostriker, Timur Yarovinsky, Meiling Su, Yuan Zhang, Xiangwen Peng, Yi Xie, Lei Pi, Xiaoqiong Gu, Sookja Kim Chung, Kathleen A. Martin, Renjing Liu, John Hwa, Wai Ho Tang

×
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts