Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Stochastic nature and red cell population distribution of the sickling-induced Ca2+ permeability.
V L Lew, … , O E Ortiz, R M Bookchin
V L Lew, … , O E Ortiz, R M Bookchin
Published June 1, 1997
Citation Information: J Clin Invest. 1997;99(11):2727-2735. https://doi.org/10.1172/JCI119462.
View: Text | PDF
Research Article

Stochastic nature and red cell population distribution of the sickling-induced Ca2+ permeability.

  • Text
  • PDF
Abstract

To explore basic properties of the sickling-induced cation permeability pathway, the Ca2+ component (Psickle-Ca) was studied in density-fractionated sickle cell anemia (SS) discocytes through its effects on the activity of the cells' Ca2+sensitive K+-channels (KCa). The instant state of KCa channel activation was monitored during continuous or cyclic deoxygenation of the cells using a novel thiocyanate-densecell formation method. Each deoxy pulse caused a reversible, sustained Psickle-Ca, which activated KCa channels in only 10-45% of cells at physiological [Ca2+]o ("activated cells"). After removal of cells activated by each previous deoxy pulse, subsequent pulses generated similar activated cell fractions, indicating a random determination rather than the response of a specific vulnerable subpopulation. The fraction of activated cells rose monotonically with [Ca2+]o along a curve reflecting the cells' distribution of Psickle-Ca, with values high enough in a small cell fraction to trigger near-maximal KCa channels. Consistent with the stochastic nature of Psickle-Ca, repeated deoxygenated-oxygenated pulsing led to progressive dense cell formation, whereas single long pulses caused one early density shift. Thus deoxygenation-induced Ca2+-permeabilization in SS cells is a probabilistic event with large cumulative dehydrating potential. The possible molecular nature of Psickle-Ca is discussed.

Authors

V L Lew, O E Ortiz, R M Bookchin

×

Full Text PDF

Download PDF (223.12 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts