Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Leukocyte adhesion in angiogenic blood vessels. Role of E-selectin, P-selectin, and beta2 integrin in lymphotoxin-mediated leukocyte recruitment in tumor microvessels.
P Borgström, … , B A Wolitsky, P Sriramarao
P Borgström, … , B A Wolitsky, P Sriramarao
Published May 1, 1997
Citation Information: J Clin Invest. 1997;99(9):2246-2253. https://doi.org/10.1172/JCI119399.
View: Text | PDF
Research Article

Leukocyte adhesion in angiogenic blood vessels. Role of E-selectin, P-selectin, and beta2 integrin in lymphotoxin-mediated leukocyte recruitment in tumor microvessels.

  • Text
  • PDF
Abstract

Interaction of circulating leukocytes with tumor microvasculature is a critical event in the recruitment of effector cells into the tumor stroma. We have examined the ability of lymphotoxin (TNF-beta), to stimulate rolling, adhesion, and transmigration of leukocytes in angiogenic blood vessels induced by tumor spheroids of Lewis lung carcinoma (LLC) implanted in dorsal skinfold chambers of nude mice. In the absence of cytokine stimulation, circulating leukocytes failed to appreciably interact with tumor microvessels (TMV), although significant rolling and adhesion was observed in normal vessels. However, stimulation with lymphotoxin (LT) resulted in a rapid increase in the number of fast and slow rolling leukocytes in TMV. Treatment with anti-P-selectin mAb 5H1 resulted in inhibition of fast rollers alone, while combination treatment with anti-P-selectin and anti-E-selectin (9A9) mAbs effectively blocked slow rolling of leukocytes. Superfusion of the lymphotoxin-stimulated neovasculature with leukotriene B4 (LTB4) resulted in stable cell adhesion followed by emigration of leukocytes into the tumor stroma. LTB4-mediated adhesion and transmigration was significantly inhibited by treatment with anti-beta2 mAb 2E6. These studies delineate a multistep cascade of leukocyte adhesion in TMV and demonstrate that stimulation of the neovasculature with cytokines and chemoattractants can result in P- and E-selectin-dependent rolling and beta2-dependent stable adhesion followed by transmigration into the tumor stroma.

Authors

P Borgström, G K Hughes, P Hansell, B A Wolitsky, P Sriramarao

×

Full Text PDF

Download PDF (304.33 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts