Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Endogenous endothelins mediate increased distal tubule acidification induced by dietary acid in rats.
D E Wesson
D E Wesson
Published May 1, 1997
Citation Information: J Clin Invest. 1997;99(9):2203-2211. https://doi.org/10.1172/JCI119393.
View: Text | PDF
Research Article

Endogenous endothelins mediate increased distal tubule acidification induced by dietary acid in rats.

  • Text
  • PDF
Abstract

We examined if endogenous endothelins mediate the decreased HCO3 secretion and increased H+ secretion in in vivo-perfused distal tubules of rats fed dietary acid as (NH4)2SO4. Animals given (NH4)2SO4 drinking solution had higher endothelin-1 addition to renal interstitial fluid than those given distilled H2O (480+/-51 vs. 293+/-32 fmol g kidney wt(-1) min(-1), respectively, P < 0.03). (NH4)2SO4-ingesting animals infused with bosentan (10 mg/kg) to inhibit A- and B-type endothelin receptors had higher HCO3 secretion than baseline (NH4)2SO4 animals (-4.7+/-0.4 vs. -2.4+/-0.3 pmol mm(-1) min(-1), P < 0.01), but (NH4)2SO4 animals given a specific inhibitor of A-type endothelin receptors (BQ-123) did not (-2.0+/-0.2 pmol mm(-1) min(-1), P = NS vs. baseline). H+ secretion was lower in bosentan-infused compared with baseline (NH4)2SO4 animals (27.7+/-2.5 vs. 43.9+/-4.0 pmol mm(-1) min(-1), P < 0.03), but that for BQ-123-infused (NH4)2SO4 animals was not (42.9+/-4.2 pmol mm(-1) min(-1), P = NS vs. baseline). Bosentan had no effect on distal tubule HCO3 or H+ secretion in control animals. The data show that dietary acid increases endothelin-1 addition to renal interstitial fluid and that inhibition of B- but not A-type endothelin receptors blunts the decreased HCO3 secretion and increased H+ secretion in the distal tubule of animals given dietary acid. The data are consistent with endogenous endothelins as mediators of increased distal tubule acidification induced by dietary acid.

Authors

D E Wesson

×

Full Text PDF | Download (215.42 KB)


Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts