Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Glucose effectiveness assessed under dynamic and steady state conditions. Comparability of uptake versus production components.
M Ader, T C Ni, R N Bergman
M Ader, T C Ni, R N Bergman
View: Text | PDF
Research Article

Glucose effectiveness assessed under dynamic and steady state conditions. Comparability of uptake versus production components.

  • Text
  • PDF
Abstract

Glucose tolerance is determined by both insulin action and insulin-independent effects, or "glucose effectiveness," which includes glucose-mediated stimulation of glucose uptake (Rd) and suppression of hepatic glucose output (HGO). Despite its importance to tolerance, controversy surrounds accurate assessment of glucose effectiveness. Furthermore, the relative contributions of glucose's actions on Rd and HGO under steady state and dynamic conditions are unclear. We performed hyperglycemic clamps and intravenous glucose tolerance tests in eight normal dogs, and assessed glucose effectiveness by two independent methods. During clamps, glucose was raised to three successive 90-min hyperglycemic plateaus by variable labeled glucose infusion rate; glucose effectiveness (GE) was quantified as the slope of the dose-response relationship between steady state glucose and glucose infusion rate (GE[CLAMP(total)]), Rd (GE[CLAMP(uptake)]) or HGO (GE[CLAMP(HGO)]). During intravenous glucose tolerance tests, tritiated glucose (1.2 microCi/kg) was injected with cold glucose (0.3 g/kg); glucose and tracer dynamics were analyzed using a two-compartment model of glucose kinetics to obtain Rd and HGO components of glucose effectiveness. All experiments were performed during somatostatin inhibition of islet secretion, and basal insulin and glucagon replacement. During clamps, Rd rose from basal (2.54+/-0.20) to 3.95+/-0.54, 6.76+/-1.21, and 9.48+/-1.27 mg/min per kg during stepwise hyperglycemia; conversely, HGO declined to 2.06+/-0.17, 1.17+/-0.19, and 0.52+/-0.33 mg/min per kg. Clamp-based glucose effectiveness was 0.0451+/-0.0061, 0.0337+/-0.0060, and 0.0102+/-0.0009 dl/min per kg for GE[CLAMP(total)], GE[CLAMP(uptake)], and GE[CLAMP(HGO)], respectively. Glucose's action on Rd dominated overall glucose effectiveness (72.2+/-3.3% of total), a result virtually identical to that obtained during intravenous glucose tolerance tests (71.6+/-6.1% of total). Both methods yielded similar estimates of glucose effectiveness. These results provide strong support that glucose effectiveness can be reliably estimated, and that glucose-stimulated Rd is the dominant component during both steady state and dynamic conditions.

Authors

M Ader, T C Ni, R N Bergman

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 292 17
PDF 73 12
Citation downloads 73 0
Totals 438 29
Total Views 467
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts