Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Glucose effectiveness assessed under dynamic and steady state conditions. Comparability of uptake versus production components.
M Ader, … , T C Ni, R N Bergman
M Ader, … , T C Ni, R N Bergman
Published March 15, 1997
Citation Information: J Clin Invest. 1997;99(6):1187-1199. https://doi.org/10.1172/JCI119275.
View: Text | PDF
Research Article

Glucose effectiveness assessed under dynamic and steady state conditions. Comparability of uptake versus production components.

  • Text
  • PDF
Abstract

Glucose tolerance is determined by both insulin action and insulin-independent effects, or "glucose effectiveness," which includes glucose-mediated stimulation of glucose uptake (Rd) and suppression of hepatic glucose output (HGO). Despite its importance to tolerance, controversy surrounds accurate assessment of glucose effectiveness. Furthermore, the relative contributions of glucose's actions on Rd and HGO under steady state and dynamic conditions are unclear. We performed hyperglycemic clamps and intravenous glucose tolerance tests in eight normal dogs, and assessed glucose effectiveness by two independent methods. During clamps, glucose was raised to three successive 90-min hyperglycemic plateaus by variable labeled glucose infusion rate; glucose effectiveness (GE) was quantified as the slope of the dose-response relationship between steady state glucose and glucose infusion rate (GE[CLAMP(total)]), Rd (GE[CLAMP(uptake)]) or HGO (GE[CLAMP(HGO)]). During intravenous glucose tolerance tests, tritiated glucose (1.2 microCi/kg) was injected with cold glucose (0.3 g/kg); glucose and tracer dynamics were analyzed using a two-compartment model of glucose kinetics to obtain Rd and HGO components of glucose effectiveness. All experiments were performed during somatostatin inhibition of islet secretion, and basal insulin and glucagon replacement. During clamps, Rd rose from basal (2.54+/-0.20) to 3.95+/-0.54, 6.76+/-1.21, and 9.48+/-1.27 mg/min per kg during stepwise hyperglycemia; conversely, HGO declined to 2.06+/-0.17, 1.17+/-0.19, and 0.52+/-0.33 mg/min per kg. Clamp-based glucose effectiveness was 0.0451+/-0.0061, 0.0337+/-0.0060, and 0.0102+/-0.0009 dl/min per kg for GE[CLAMP(total)], GE[CLAMP(uptake)], and GE[CLAMP(HGO)], respectively. Glucose's action on Rd dominated overall glucose effectiveness (72.2+/-3.3% of total), a result virtually identical to that obtained during intravenous glucose tolerance tests (71.6+/-6.1% of total). Both methods yielded similar estimates of glucose effectiveness. These results provide strong support that glucose effectiveness can be reliably estimated, and that glucose-stimulated Rd is the dominant component during both steady state and dynamic conditions.

Authors

M Ader, T C Ni, R N Bergman

×

Full Text PDF | Download (269.70 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts