Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Hypoxia alters the subcellular distribution of protein kinase C isoforms in neonatal rat ventricular myocytes.
M Goldberg, … , H L Zhang, S F Steinberg
M Goldberg, … , H L Zhang, S F Steinberg
Published January 1, 1997
Citation Information: J Clin Invest. 1997;99(1):55-61. https://doi.org/10.1172/JCI119133.
View: Text | PDF
Research Article

Hypoxia alters the subcellular distribution of protein kinase C isoforms in neonatal rat ventricular myocytes.

  • Text
  • PDF
Abstract

Cardiac myocytes coexpress multiple protein kinase C (PKC) isoforms which likely play distinct roles in signaling pathways leading to changes in contractility, hypertrophy, and ischemic preconditioning. Although PKC has been reported to be activated during myocardial ischemia, the effect of ischemia/hypoxia on individual PKC isoforms has not been determined. This study examines the effect of hypoxia on the subcellular distribution of individual PKC isoforms in cultured neonatal rat ventricular myocytes. Hypoxia induces the redistribution of PKC alpha and PKC epsilon from the soluble to the particulate compartment. This effect (which is presumed to represent activation of PKC alpha and PKC epsilon) is detectable by 1 h, sustained for up to 24 h, and reversible within 1 h of reoxygenation. Inhibition of phospholipase C with tricyclodecan-9-yl-xanthogenate (D609) prevents the hypoxia-induced redistribution of PKC alpha and PKC epsilon, whereas chelation of intracellular calcium with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) blocks the redistribution of PKC alpha, but not PKC epsilon; D609 and BAPTA do not influence the partitioning of PKC alpha and PKC epsilon in normoxic myocytes. Hypoxia, in contrast, decreases the membrane association of PKC delta via a mechanism that is distinct from the hypoxia-induced translocation/activation of PKC alpha/PKC epsilon, since the response is slower in onset, slowly reversible upon reoxygenation, and not blocked by D609 or BAPTA. The hypoxia-induced shift of PKC delta to the soluble compartment does not prevent subsequent 4-beta phorbol 12-myristate-13-acetate-dependent translocation/activation of PKC delta. Hypoxia does not alter the abundance of any PKC isoform nor does it alter the subcellular distribution of PKC lambda. The selective hypoxia-induced activation of PKC isoforms through a pathway involving phospholipase C (PKC alpha/PKC epsilon) and intracellular calcium (PKC alpha) may critically influence cardiac myocyte contractility, gene expression, and/or tolerance to ischemia.

Authors

M Goldberg, H L Zhang, S F Steinberg

×

Full Text PDF

Download PDF (253.77 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts