Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A program of cell death and extracellular matrix degradation is activated in the amnion before the onset of labor.
H Lei, … , J J Jeffrey, J F Strauss 3rd
H Lei, … , J J Jeffrey, J F Strauss 3rd
Published November 1, 1996
Citation Information: J Clin Invest. 1996;98(9):1971-1978. https://doi.org/10.1172/JCI119001.
View: Text | PDF
Research Article

A program of cell death and extracellular matrix degradation is activated in the amnion before the onset of labor.

  • Text
  • PDF
Abstract

Fetal membranes usually rupture during the process of labor. Premature fetal membrane rupture occurs not infrequently and is associated with significant fetal and maternal morbidity. The mechanisms of normal and pathologic fetal membrane rupture are not well understood. We have examined structural and biochemical changes in the rat amnion as labor approaches in order to characterize this process in normal pregnancy. Here we report that before the onset of active labor the amnion epithelial cells undergo apoptotic cell death which encompasses degradation of 28S ribosomal subunit RNA and associated P proteins and fragmentation of nuclear DNA. Concurrent with these cellular changes, the amnion type I collagen matrix is degraded with the accumulation of three-quarter length type I collagen fragments in extraembryonic fluid, characteristic of the cleavage of fibrillar collagen by interstitial collagenase. Western blot and immunohistochemical analyses confirmed that interstitial collagenase protein appears in association with the loss of amnion type I collagen. We conclude that amnion epithelial cells undergo a process of programmed cell death associated with orchestrated extracellular matrix degradation which begins before the onset of active labor. Thus, fetal membrane rupture is likely to be the result of biochemical changes as well as physical forces.

Authors

H Lei, E E Furth, R Kalluri, T Chiou, K I Tilly, J L Tilly, K B Elkon, J J Jeffrey, J F Strauss 3rd

×

Full Text PDF

Download PDF (750.05 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts