Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118729

Dopamine decreases expression of type-1 angiotensin II receptors in renal proximal tubule.

H F Cheng, B N Becker, and R C Harris

Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.

Find articles by Cheng, H. in: JCI | PubMed | Google Scholar

Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.

Find articles by Becker, B. in: JCI | PubMed | Google Scholar

Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.

Find articles by Harris, R. in: JCI | PubMed | Google Scholar

Published June 15, 1996 - More info

Published in Volume 97, Issue 12 on June 15, 1996
J Clin Invest. 1996;97(12):2745–2752. https://doi.org/10.1172/JCI118729.
© 1996 The American Society for Clinical Investigation
Published June 15, 1996 - Version history
View PDF
Abstract

Systemic and/or locally produced angiotensin II stimulates salt and water reabsorption in the renal proximal tubule. In vivo, dopamine (DA) may serve as a counterregulatory hormone to angiotensin II's acute actions on the proximal tubule. We examined whether dopamine modulates AT1 receptor expression in cultured proximal tubule cells (RPTC) expressing DA1 receptors. Dopamine decreased basal RPTC AT1 receptor mRNA levels by 67 +/- 7% (n = 10; P < 0.005) and decreased 125I-angiotensin II binding by 41 +/- 7% (n = 4; P < 0.05). The DA1-specific agonist, SKF38393 decreased basal AT1 receptor mRNA levels (65 +/- 5% inhibition; n = 5; P < 0.025), and the DA1-specific antagonist, SCH23390 reversed dopamine's inhibition of AT1 receptor mRNA expression (24 +/- 10% inhibition; n = 8; NS) and angiotensin II binding (5 +/- 15%; n = 4; NS). DA2-specific antagonists were ineffective. In rats given L-DOPA in the drinking water for 5 d, there were decreases in both proximal tubule AT1 receptor mRNA expression (80 +/- 5%; n = 6; P < 0.005) and specific [125I] Ang II binding (control: 0.74 +/- 0.13 fmol/mg pro vs. 0.40 +/- 0.63 fmol/mg pro; n = 5; P < 0.05). In summary, dopamine, acting through DA1 receptors, decreased AT1 receptor expression in proximal tubule, an effect likely mediated by increased intracellular cAMP levels. Local dopamine production also led to decreased AT1 receptor expression, suggesting dopamine may reset sensitivity of the proximal tubule to angiotensin II.

Version history
  • Version 1 (June 15, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts