Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118545

Lymphocytes stimulate expression of 5-lipoxygenase and its activating protein in monocytes in vitro via granulocyte macrophage colony-stimulating factor and interleukin 3.

W L Ring, C A Riddick, J R Baker, D A Munafo, and T D Bigby

Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego 92161, USA.

Find articles by Ring, W. in: PubMed | Google Scholar

Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego 92161, USA.

Find articles by Riddick, C. in: PubMed | Google Scholar

Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego 92161, USA.

Find articles by Baker, J. in: PubMed | Google Scholar

Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego 92161, USA.

Find articles by Munafo, D. in: PubMed | Google Scholar

Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego 92161, USA.

Find articles by Bigby, T. in: PubMed | Google Scholar

Published March 1, 1996 - More info

Published in Volume 97, Issue 5 on March 1, 1996
J Clin Invest. 1996;97(5):1293–1301. https://doi.org/10.1172/JCI118545.
© 1996 The American Society for Clinical Investigation
Published March 1, 1996 - Version history
View PDF
Abstract

The aim of this study was to examine the role of lymphocytes in regulating expression of the 5-lipoxygenase pathway in monocytes. When monocytes were cultured over a period of days with lymphocytes, calcium ionophore-stimulated 5-lipoxygenase activity was enhanced. If lymphocytes alone were activated with lectins and their supernatants added to monocytes, stimulated 5-lipoxygenase activity was increased, whereas supernatants from lymphocytes cultured without lectins had no effect. Increased immunoreactive protein and mRNA for 5-lipoxygenase and 5-lipoxygenase activating protein were present in cells conditioned with lectin-activated lymphocyte supernatants. The effect of activated-lymphocyte supernatants could be mimicked by either GM-CSF or IL-3, but there was no additive effect with both cytokines. Both GM-CSF and IL-3 were present in the supernatant from lectin-activated lymphocytes at concentrations above their ED50, but were undetectable in the supernatant from nonactivated lymphocytes. The effect of lectin-activated lymphocyte supernatant could be inhibited by neutralizing antibodies to both cytokines, but not to either cytokine alone. We conclude that lymphocytes can regulate the expression of 5-lipoxygenase in monocytes, over a period of days, via the release of soluble factors, primarily GM-CSF and IL-3.

Version history
  • Version 1 (March 1, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts