Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118528

Hypoxic encephalopathy after near-drowning studied by quantitative 1H-magnetic resonance spectroscopy.

R Kreis, E Arcinue, T Ernst, T K Shonk, R Flores, and B D Ross

Huntington Medical Research Institute, Pasadena, California 91105, USA.

Find articles by Kreis, R. in: JCI | PubMed | Google Scholar

Huntington Medical Research Institute, Pasadena, California 91105, USA.

Find articles by Arcinue, E. in: JCI | PubMed | Google Scholar

Huntington Medical Research Institute, Pasadena, California 91105, USA.

Find articles by Ernst, T. in: JCI | PubMed | Google Scholar

Huntington Medical Research Institute, Pasadena, California 91105, USA.

Find articles by Shonk, T. in: JCI | PubMed | Google Scholar

Huntington Medical Research Institute, Pasadena, California 91105, USA.

Find articles by Flores, R. in: JCI | PubMed | Google Scholar

Huntington Medical Research Institute, Pasadena, California 91105, USA.

Find articles by Ross, B. in: JCI | PubMed | Google Scholar

Published March 1, 1996 - More info

Published in Volume 97, Issue 5 on March 1, 1996
J Clin Invest. 1996;97(5):1142–1154. https://doi.org/10.1172/JCI118528.
© 1996 The American Society for Clinical Investigation
Published March 1, 1996 - Version history
View PDF
Abstract

Early prediction of outcome after global hypoxia of the brain requires accurate determination of the nature and extent of neurological injury and is cardinal for patient management. Cerebral metabolites of gray and white matter were determined sequentially after near-drowning using quantitative 1H nuclear magnetic resonance spectroscopy (MRS) in 16 children. Significant metabolite abnormalities were demonstrated in all patients compared with their age-matched normal controls. Severity of brain damage was quantified from metabolite concentrations and ratios. Loss of N-acetylaspartate, a putative neuronal marker, from gray matter preceded that observed in white matter and was more severe. Total creatine decreased, while lactate and glutamine/glutamate concentrations increased. Changes progressed with time after injury. A spectroscopic prognosis index distinguished between good outcome (n = 5) and poor outcome (n = 11) with one false negative (bad outcome after borderline MRS result) and no false positive results (100% specificity). The distinction was made with 90% sensitivity early (after 48 h) and became 100% later (by days 3 and 4). This compared with 50-75% specificity and 70-100% sensitivity based upon single clinical criteria. MRS performed sequentially in occipital gray matter provides useful objective information which can significantly enhance the ability to establish prognosis after near-drowning.

Version history
  • Version 1 (March 1, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts