Early prediction of outcome after global hypoxia of the brain requires accurate determination of the nature and extent of neurological injury and is cardinal for patient management. Cerebral metabolites of gray and white matter were determined sequentially after near-drowning using quantitative 1H nuclear magnetic resonance spectroscopy (MRS) in 16 children. Significant metabolite abnormalities were demonstrated in all patients compared with their age-matched normal controls. Severity of brain damage was quantified from metabolite concentrations and ratios. Loss of N-acetylaspartate, a putative neuronal marker, from gray matter preceded that observed in white matter and was more severe. Total creatine decreased, while lactate and glutamine/glutamate concentrations increased. Changes progressed with time after injury. A spectroscopic prognosis index distinguished between good outcome (n = 5) and poor outcome (n = 11) with one false negative (bad outcome after borderline MRS result) and no false positive results (100% specificity). The distinction was made with 90% sensitivity early (after 48 h) and became 100% later (by days 3 and 4). This compared with 50-75% specificity and 70-100% sensitivity based upon single clinical criteria. MRS performed sequentially in occipital gray matter provides useful objective information which can significantly enhance the ability to establish prognosis after near-drowning.
R Kreis, E Arcinue, T Ernst, T K Shonk, R Flores, B D Ross
Usage data is cumulative from August 2021 through August 2022.
Usage | JCI | PMC |
---|---|---|
Text version | 154 | 57 |
20 | 12 | |
Citation downloads | 14 | 0 |
Totals | 188 | 69 |
Total Views | 257 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.