Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118518

Two thromboxane A2 receptor isoforms in human platelets. Opposite coupling to adenylyl cyclase with different sensitivity to Arg60 to Leu mutation.

T Hirata, F Ushikubi, A Kakizuka, M Okuma, and S Narumiya

Department of Internal Medicine, Kyoto University Faculty of Medicine, Japan.

Find articles by Hirata, T. in: PubMed | Google Scholar

Department of Internal Medicine, Kyoto University Faculty of Medicine, Japan.

Find articles by Ushikubi, F. in: PubMed | Google Scholar

Department of Internal Medicine, Kyoto University Faculty of Medicine, Japan.

Find articles by Kakizuka, A. in: PubMed | Google Scholar

Department of Internal Medicine, Kyoto University Faculty of Medicine, Japan.

Find articles by Okuma, M. in: PubMed | Google Scholar

Department of Internal Medicine, Kyoto University Faculty of Medicine, Japan.

Find articles by Narumiya, S. in: PubMed | Google Scholar

Published February 15, 1996 - More info

Published in Volume 97, Issue 4 on February 15, 1996
J Clin Invest. 1996;97(4):949–956. https://doi.org/10.1172/JCI118518.
© 1996 The American Society for Clinical Investigation
Published February 15, 1996 - Version history
View PDF
Abstract

Thromboxane A2 (TXA2) receptor is a key molecule in hemostasis as its abnormality leads to bleeding disorders. Two isoforms of the human TXA2 receptor have been cloned; one from placenta and the other from endothelium, here referred to as TXR alpha and TXR beta, respectively. These isoforms differ only in their carboxyl-terminal tails. We report that both isoforms are present in human platelets. The two isoforms expressed in cultured cells show similar ligand binding characteristics and phospholipase C (PLC) activation but oppositely regulate adenylyl cyclase activity; TXR alpha activates adenylyl cyclase, while TXR beta inhibits it. The Arg60 to Leu mutant of TXR alpha, which has been shown to impair PLC activation (Hirata, T., A. Kakizuka, F. Ushikubi, I. Fuse, M. Okuma, and S. Narumiya. 1994. J. Clin. Invest. 94: 1662-1667), also impairs adenylyl cyclase stimulation, whereas that of TXR beta retains its activity to inhibit adenylyl cyclase. These findings suggest that the pathway linked to adenylyl cyclase inhibition might be involved in some of the TXA2-induced platelet responses such as shape change and phospholipase A2 activation which remain unaffected in the patients with this mutation.

Version history
  • Version 1 (February 15, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts