Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Upcoming)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Identification of a new susceptibility locus for insulin-dependent diabetes mellitus by ancestral haplotype congenic mapping.
H Ikegami, … , K Takekawa, T Ogihara
H Ikegami, … , K Takekawa, T Ogihara
Published October 1, 1995
Citation Information: J Clin Invest. 1995;96(4):1936-1942. https://doi.org/10.1172/JCI118239.
View: Text | PDF
Research Article

Identification of a new susceptibility locus for insulin-dependent diabetes mellitus by ancestral haplotype congenic mapping.

  • Text
  • PDF
Abstract

The number and exact locations of the major histocompatibility complex (MHC)-linked diabetogenic genes (Idd-1) are unknown because of strong linkage disequilibrium within the MHC. By using a congenic NOD mouse strain that possesses a recombinant MHC from a diabetes-resistant sister strain, we have now shown that Idd-1 consists of at least two components, one in and one outside the class II A and E regions. A new susceptibility gene (Idd-16) was mapped to the < 11-centiMorgan segment of chromosome 17 adjacent to, but distinct from, previously known Idd-1 candidates, class II A, E, and Tap genes. The coding sequences and splicing donor and acceptor sequences of the Tnfa gene, a candidate gene for Idd-16, were identical in the NOD, CTS, and BALB/c alleles, ruling out amino acid changes in the TNF molecule as a determinant of insulin-dependent diabetes mellitus susceptibility. Our results not only map a new MHC-linked diabetogenic gene(s) but also suggest a new way to fine map disease susceptibility genes within a region where strong linkage disequilibrium exists.

Authors

H Ikegami, S Makino, E Yamato, Y Kawaguchi, H Ueda, T Sakamoto, K Takekawa, T Ogihara

×

Full Text PDF | Download (1.39 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts