Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Upcoming)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118234

Neutrophils use both shared and distinct mechanisms to adhere to selectins under static and flow conditions.

K D Patel, K L Moore, M U Nollert, and R P McEver

Department of Medicine, W. K. Warren Medical Research Institute, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.

Find articles by Patel, K. in: JCI | PubMed | Google Scholar

Department of Medicine, W. K. Warren Medical Research Institute, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.

Find articles by Moore, K. in: JCI | PubMed | Google Scholar

Department of Medicine, W. K. Warren Medical Research Institute, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.

Find articles by Nollert, M. in: JCI | PubMed | Google Scholar

Department of Medicine, W. K. Warren Medical Research Institute, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.

Find articles by McEver, R. in: JCI | PubMed | Google Scholar

Published October 1, 1995 - More info

Published in Volume 96, Issue 4 on October 1, 1995
J Clin Invest. 1995;96(4):1887–1896. https://doi.org/10.1172/JCI118234.
© 1995 The American Society for Clinical Investigation
Published October 1, 1995 - Version history
View PDF
Abstract

Both P-selectin glycoprotein ligand-1 (PSGL-1) and L-selectin are localized on the microvilli of neutrophils and have been implicated in the attachment of neutrophils to P-selectin or E-selectin. We directly compared the attachment and rolling of neutrophils on P-selectin and E-selectin under flow, with emphasis on the functions of PSGL-1 and L-selectin. Flowing neutrophils attached more avidly and rolled at lower velocities on P-selectin than on E-selectin at matched densities. Studies with purified molecules indicated that P-selectin and E-selectin bound to a related site on PSGL-1 that overlapped the epitope for the anti-PSGL-1 mAb PL1. E-selectin bound with lower affinity than P-selectin to this site and also bound to an additional site(s) on PSGL-1.PL1 abolished adhesion of neutrophils to P-selectin under shear or static conditions, whereas DREG-56, a mAb to L-selectin, had no effect on adhesion to P-selectin. PL1 inhibited attachment of neutrophils to E-selectin under flow but not static conditions. DREG-56 also inhibited attachment of flowing neutrophils to E-selectin, and a combination of DREG-56 and PL1 nearly eliminated attachment to E-selectin under flow. These data suggest that PSGL-1 functions cooperatively with L-selectin to mediate optimal attachment of flowing neutrophils to E-selectin but not to P-selectin. Neutrophils attach more efficiently and with greater strength to P-selectin, perhaps because of the higher affinity of P-selectin for the PL1-defined site on PSGL-1.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1887
page 1887
icon of scanned page 1888
page 1888
icon of scanned page 1889
page 1889
icon of scanned page 1890
page 1890
icon of scanned page 1891
page 1891
icon of scanned page 1892
page 1892
icon of scanned page 1893
page 1893
icon of scanned page 1894
page 1894
icon of scanned page 1895
page 1895
icon of scanned page 1896
page 1896
Version history
  • Version 1 (October 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts