Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117668

Chronic metabolic acidosis decreases albumin synthesis and induces negative nitrogen balance in humans.

P E Ballmer, M A McNurlan, H N Hulter, S E Anderson, P J Garlick, and R Krapf

Department of Medicine, University of Berne, Inselspital, Switzerland.

Find articles by Ballmer, P. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Berne, Inselspital, Switzerland.

Find articles by McNurlan, M. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Berne, Inselspital, Switzerland.

Find articles by Hulter, H. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Berne, Inselspital, Switzerland.

Find articles by Anderson, S. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Berne, Inselspital, Switzerland.

Find articles by Garlick, P. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Berne, Inselspital, Switzerland.

Find articles by Krapf, R. in: JCI | PubMed | Google Scholar

Published January 1, 1995 - More info

Published in Volume 95, Issue 1 on January 1, 1995
J Clin Invest. 1995;95(1):39–45. https://doi.org/10.1172/JCI117668.
© 1995 The American Society for Clinical Investigation
Published January 1, 1995 - Version history
View PDF
Abstract

Chronic metabolic acidosis has been previously shown to stimulate protein degradation. To evaluate the effects of chronic metabolic acidosis on nitrogen balance and protein synthesis we measured albumin synthesis rates and urinary nitrogen excretion in eight male subjects on a constant metabolic diet before and during two different degrees of chronic metabolic acidosis (NH4Cl 2.1 mmol/kg body weight, low dose group, and 4.2 mmol/kg body weight, high dose group, orally for 7 d). Albumin synthesis rates were measured by intravenous injection of [2H5ring]phenylalanine (43 mg/kg body weight, 7.5 atom percent and 15 atom percent, respectively) after an overnight fast. In the low dose group, fractional synthesis rates of albumin decreased from 9.9 +/- 1.0% per day in the control period to 8.4 +/- 0.7 (n.s.) in the acidosis period, and from 8.3 +/- 1.3% per day to 6.3 +/- 1.1 (P < 0.001) in the high dose group. Urinary nitrogen excretion increased significantly in the acidosis period (sigma delta 634 mmol in the low dose group, 2,554 mmol in the high dose group). Plasma concentrations of insulin-like growth factor-I, free thyroxine and tri-iodothyronine were significantly lower during acidosis. In conclusion, chronic metabolic acidosis causes negative nitrogen balance and decreases albumin synthesis in humans. The effect on albumin synthesis may be mediated, at least in part, by a suppression of insulin-like growth factor-I, free thyroxine and tri-iodothyronine.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 39
page 39
icon of scanned page 40
page 40
icon of scanned page 41
page 41
icon of scanned page 42
page 42
icon of scanned page 43
page 43
icon of scanned page 44
page 44
icon of scanned page 45
page 45
Version history
  • Version 1 (January 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts