Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Rapid conversion to high xanthine oxidase activity in viable Kupffer cells during hypoxia.
J S Wiezorek, … , D E Kupperman, C A Brass
J S Wiezorek, … , D E Kupperman, C A Brass
Published December 1, 1994
Citation Information: J Clin Invest. 1994;94(6):2224-2230. https://doi.org/10.1172/JCI117584.
View: Text | PDF
Research Article

Rapid conversion to high xanthine oxidase activity in viable Kupffer cells during hypoxia.

  • Text
  • PDF
Abstract

It has been widely postulated that the central mechanism of hepatic reperfusion injury involves the conversion, during ischemia, of the enzyme xanthine dehydrogenase (XDH) to its free radical-producing form, xanthine oxidase (XOD). However, this theory has been questioned because (a) XDH to XOD conversion in whole liver occurs very slowly; (b) the cellular distribution of XDH/XOD is unclear; and (c) the direct demonstration of XDH to XOD conversion in viable cells is lacking. In this paper, we address all three issues by measuring XDH to XOD conversion and cell viability in purified populations of hepatic endothelial cells (EC), Kupffer cells (KC), and hepatocytes (HEP). Although XDH/XOD activity on a cellular basis was greater in hepatocytes (0.92 +/- 0.12 mU/10(6) cells) than ECs (0.03 +/- 0.01) or KCs (0.12 +/- 0.04), XDH + XOD specific activity was similar in all three cell types (HEP 1.85 +/- 0.10 U/g protein; EC 1.69 +/- 0.54; KC 2.30 +/- 0.22). Over 150 min of warm (37 degrees C) or 24 h of cold (4 degrees C) hypoxia, percent XOD activity increased slowly in ECs, from 21 +/- 2% (basal) to 39 +/- 3% (warm) and 49 +/- 5% (cold) and in HEPs (29 +/- 2% to 38 +/- 3% and 49 +/- 2%), but converted significantly faster in KCs (28 +/- 3% to 91 +/- 7% and 94 +/- 4%). The dramatic changes in Kupffer cell XOD during cold hypoxia occurred despite only minor changes in cell viability. When hypoxic KCs were reoxygenated after 16 h of cold hypoxia, there was a marked increase in cell death that was significantly blocked by allopurinol. These data suggest that significant conversion to the free radical-producing state occurs within viable KCs, and that Kupffer cell XOD may play an important role in mediating reperfusion injury in the liver.

Authors

J S Wiezorek, D H Brown, D E Kupperman, C A Brass

×

Full Text PDF

Download PDF (1.47 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts